1
|
Miura H, Nakamura A, Kurosaki A, Kotani A, Motojima M, Tanaka K, Kakuta S, Ogiwara S, Ohmi Y, Komaba H, Schilit SLP, Morton CC, Gurumurthy CB, Ohtsuka M. Targeted insertion of conditional expression cassettes into the mouse genome using the modified i-PITT. BMC Genomics 2024; 25:568. [PMID: 38840068 PMCID: PMC11155135 DOI: 10.1186/s12864-024-10250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ayaka Nakamura
- Life Science Support Center, Tokai University, Kanagawa, Japan
| | - Aki Kurosaki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ai Kotani
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa, Japan
| | - Keiko Tanaka
- Departments of Basic Medicine, Tokai University School of Medicine, Kanagawa, Japan
- Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Okayama, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sanae Ogiwara
- Life Science Support Center, Tokai University, Kanagawa, Japan
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Hirotaka Komaba
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Samantha L P Schilit
- Program in Genetics and Genomics and Certificate Program in Leder Human Biology and Translational Medicine, Biological and Biomedical Sciences Program, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Institute Member, Broad Institute of Massachusetts Institute of Technology and Harvard University, Kendall Square, Cambridge, MA, USA
- Manchester Center for Hearing and Deafness, University of Manchester, Manchester, UK
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan.
| |
Collapse
|
2
|
Gurumurthy CB, Quadros RM, Ohtsuka M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat Protoc 2022; 17:2129-2138. [PMID: 35922579 DOI: 10.1038/s41596-022-00721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
One of the major challenges of gene therapy-an approach to treat diseases caused by faulty genes-is a lack of technologies that deliver healthy gene copies to target tissues and cells. Some commonly used approaches include viral vectors or coating therapeutic nucleic acids with lipid-based nanoparticles to pass through cell membranes, but these technologies have had limited success. A revolutionary tool, the CRISPR-Cas gene-editing system, offers tremendous promise, but it too suffers from problems with delivery. Another tool, called 'SEND' (for 'selective endogenous encapsidation for cellular delivery'), seems to offer a better solution. The SEND system uses endogenous genetic components to package mRNA cargoes to deliver them to other cells via virus-like particles (VLPs). The SEND-VLP tool has enormous potential as a gene-therapy tool, if the endogenous components of SEND can be repurposed to produce VLPs containing therapeutic cargoes. However, several aspects of this newly identified phenomenon are not yet fully understood. Genetically engineered mouse (GEM) models, expressing different combinations of SEND components in a controllable and inducible fashion, could serve as valuable tools to understand more about this tool and to repurpose it for gene-therapy applications. In this Perspective, we discuss how GEM models and mouse molecular genetics tools could be used for SEND-VLP research.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA. .,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA.,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan. .,The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
3
|
Miura H, Imafuku J, Kurosaki A, Sato M, Ma Y, Zhang G, Mizutani A, Kamimura K, Gurumurthy CB, Liu D, Ohtsuka M. Novel reporter mouse models useful for evaluating in vivo gene editing and for optimization of methods of delivering genome editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:325-336. [PMID: 33850636 PMCID: PMC8020343 DOI: 10.1016/j.omtn.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/02/2021] [Indexed: 11/15/2022]
Abstract
The clustered regularly interspersed palindromic repeats (CRISPR) system is a powerful genome-editing tool to modify genomes, virtually in any species. The CRISPR tool has now been utilized in many areas of medical research, including gene therapy. Although several proof-of-concept studies show the feasibility of in vivo gene therapy applications for correcting disease-causing mutations, and new and improved tools are constantly being developed, there are not many choices of suitable reporter models to evaluate genome editor tools and their delivery methods. Here, we developed and validated reporter mouse models containing a single copy of disrupted EGFP (ΔEGFP) via frameshift mutations. We tested several delivery methods for validation of the reporters, and we demonstrated their utility to assess both non-homologous end-joining (NHEJ) and via homology-directed repair (HDR) processes in embryos and in somatic tissues. With the use of the reporters, we also show that hydrodynamic delivery of ribonucleoprotein (RNP) with Streptococcus pyogenes (Sp)Cas9 protein mixed with synthetic guide RNA (gRNA) elicits better genome-editing efficiencies than the plasmid vector-based system in mouse liver. The reporters can also be used for assessing HDR efficiencies of the Acidaminococcus sp. (As)Cas12a nuclease. The results suggest that the ΔEGFP mouse models serve as valuable tools for evaluation of in vivo genome editing.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Jurai Imafuku
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Aki Kurosaki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Akiko Mizutani
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Department of General Medicine, Niigata University School of Medicine, Niigata, JAPAN
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.,Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Tamura S, Yasuoka Y, Miura H, Takahashi G, Sato M, Ohtsuka M. Thy1 promoter activity in the Rosa26 locus in mice: lessons from Dre-rox conditional expression system. Exp Anim 2020; 69:287-294. [PMID: 32051391 PMCID: PMC7445056 DOI: 10.1538/expanim.20-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pronuclear injection (PI)-based targeted transgenesis (PITT) method allows the
generation of targeted transgenic (Tg) mice wherein a single copy of a transgene is
integrated into the Rosa26 locus following PI. The
Rosa26 locus allows unbiased ubiquitous expression of integrated
transgenes; however, it remains little known whether tissue-specific promoters retain
their functional properties when placed at the Rosa26 locus. We evaluated
tissue-specific activity and reproducibility of exogenous tissue-specific promoters
targeted to the Rosa26 locus by generating Thy1-Dre/Dre reporter mice
using PITT and assessed spatial expression patterns of the transgenes. The
Thy1 promoter targeted to the Rosa26 locus appeared
active in virtually all Purkinje cells in the cerebellum and hippocampus. However, mosaic
expression of the transgene under the Thy1 promoter was observed in many
other organs. This phenomenon was consistent in all the Tg lines generated by PITT,
indicating a high degree of reproducibility for this experiment.
Collapse
Affiliation(s)
- Saaki Tamura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University, School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Gou Takahashi
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Department of Bioproduction, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 890-8544, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
5
|
Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 2018; 13:195-215. [PMID: 29266098 PMCID: PMC6058056 DOI: 10.1038/nprot.2017.153] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CRISPR/Cas9-based genome editing can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research involve knock-in (reporters or recombinases) or gene replacement (e.g., conditional knockout alleles containing exons flanked by LoxP sites). A few methods for creating such models have been reported that use double-stranded DNA as donors, but their efficiency is typically 1-10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs (ssDNAs) serve as very efficient donors, both for insertion and for gene replacement. We call this method efficient additions with ssDNA inserts-CRISPR (Easi-CRISPR) because it is a highly efficient technology (efficiency is typically 30-60% and reaches as high as 100% in some cases). The protocol takes ∼2 months to generate the founder mice.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of
Medicine, Tokai University, Kanagawa 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa 259-1193,
Japan
| | - Rolen M. Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical
Center, Omaha, NE, USA
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical
Center, Omaha, NE, USA
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska
Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of
Medicine, Tokai University, Kanagawa 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa 259-1193,
Japan
- The Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan
| |
Collapse
|
6
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Keighren MA, Flockhart JH, West JD. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras. Biol Open 2016; 5:596-610. [PMID: 27103217 PMCID: PMC4874354 DOI: 10.1242/bio.017111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/22/2016] [Indexed: 01/22/2023] Open
Abstract
The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.
Collapse
Affiliation(s)
- Margaret A Keighren
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jean H Flockhart
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John D West
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
8
|
Furukawa S, Kuwajima Y, Chosa N, Satoh K, Ohtsuka M, Miura H, Kimura M, Inoko H, Ishisaki A, Fujimura A, Miura H. Establishment of immortalized mesenchymal stem cells derived from the submandibular glands of tdTomato transgenic mice. Exp Ther Med 2015; 10:1380-1386. [PMID: 26622494 PMCID: PMC4578048 DOI: 10.3892/etm.2015.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 07/29/2015] [Indexed: 01/14/2023] Open
Abstract
Transgenic mice that overexpress the red fluorescent protein tdTomato (tdTomato mice) are well suited for use in regenerative medicine studies. Cultured cells from this murine model exhibit strong red fluorescence, enabling real-time in vivo imaging through the body surface of grafted animals. Mesenchymal stem cells (MSCs) have marked potential for use in cell therapy and regenerative medicine; however, the mechanisms that regulate their dynamics in vivo are poorly understood. In the present study, an MSC line was derived from the submandibular gland fibroblasts of tdTomato mice. The fluorescent signal from this cell line was observed in organs throughout the body, as well as in salivary glands. Primary culture cells derived from the submandibular gland were immortalized with SV40 large T antigen (GManSV cells); these cells exhibited increased migratory ability, as compared with those isolated from the sublingual gland. GManSV cells were tdTomato-positive and exhibited spindle-shaped fibroblastic morphology; they also robustly expressed mouse MSC markers: Stem cell antigen-1 (Sca-1), CD44, and CD90. This cell line retained multipotent stem cell characteristics, as evidenced by its ability to differentiate into both osteogenic and adipogenic lineages. These results indicate that Sca-1+/CD44+/CD90+-GManSV cells may be useful for kinetic studies of submandibular gland-derived MSCs in the context of in vitro co-culture with other types of salivary gland-derived cells. These cells may also be used for in vivo imaging studies, in order to identify novel cell therapy and regenerative medicine for the treatment of salivary gland diseases.
Collapse
Affiliation(s)
- Shinji Furukawa
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Yukinori Kuwajima
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Kazuro Satoh
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Akira Fujimura
- Division of Functional Morphology, Department of Anatomy, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Hiroyuki Miura
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
9
|
CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 2015; 5:12799. [PMID: 26242611 PMCID: PMC4525291 DOI: 10.1038/srep12799] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/10/2015] [Indexed: 11/08/2022] Open
Abstract
Knockdown mouse models, where gene dosages can be modulated, provide valuable insights into gene function. Typically, such models are generated by embryonic stem (ES) cell-based targeted insertion, or pronuclear injection, of the knockdown expression cassette. However, these methods are associated with laborious and time-consuming steps, such as the generation of large constructs with elements needed for expression of a functional RNAi-cassette, ES-cell handling, or screening for mice with the desired knockdown effect. Here, we demonstrate that reliable knockdown models can be generated by targeted insertion of artificial microRNA (amiRNA) sequences into a specific locus in the genome [such as intronic regions of endogenous eukaryotic translation elongation factor 2 (eEF-2) gene] using the Clustered Regularly Interspaced Short Palindromic Repeats/Crispr associated 9 (CRISPR/Cas9) system. We used in vitro synthesized single-stranded DNAs (about 0.5-kb long) that code for amiRNA sequences as repair templates in CRISPR/Cas9 mutagenesis. Using this approach we demonstrate that amiRNA cassettes against exogenous (eGFP) or endogenous [orthodenticle homeobox 2 (Otx2)] genes can be efficiently targeted to a predetermined locus in the genome and result in knockdown of gene expression. We also provide a strategy to establish conditional knockdown models with this method.
Collapse
|
10
|
Lessons from mouse chimaera experiments with a reiterated transgene marker: revised marker criteria and a review of chimaera markers. Transgenic Res 2015; 24:665-91. [PMID: 26048593 PMCID: PMC4504987 DOI: 10.1007/s11248-015-9883-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/21/2015] [Indexed: 11/12/2022]
Abstract
Recent reports of a new generation of ubiquitous transgenic chimaera markers prompted us to consider the criteria used to evaluate new chimaera markers and develop more objective assessment methods. To investigate this experimentally we used several series of fetal and adult chimaeras, carrying an older, multi-copy transgenic marker. We used two additional independent markers and objective, quantitative criteria for cell selection and cell mixing to investigate quantitative and spatial aspects of developmental neutrality. We also suggest how the quantitative analysis we used could be simplified for future use with other markers. As a result, we recommend a five-step procedure for investigators to evaluate new chimaera markers based partly on criteria proposed previously but with a greater emphasis on examining the developmental neutrality of prospective new markers. These five steps comprise (1) review of published information, (2) evaluation of marker detection, (3) genetic crosses to check for effects on viability and growth, (4) comparisons of chimaeras with and without the marker and (5) analysis of chimaeras with both cell populations labelled. Finally, we review a number of different chimaera markers and evaluate them using the extended set of criteria. These comparisons indicate that, although the new generation of ubiquitous fluorescent markers are the best of those currently available and fulfil most of the criteria required of a chimaera marker, further work is required to determine whether they are developmentally neutral.
Collapse
|
11
|
Watanabe M, Kobayashi M, Nagaya M, Matsunari H, Nakano K, Maehara M, Hayashida G, Takayanagi S, Sakai R, Umeyama K, Watanabe N, Onodera M, Nagashima H. Production of transgenic cloned pigs expressing the far-red fluorescent protein monomeric Plum. J Reprod Dev 2015; 61:169-77. [PMID: 25739316 PMCID: PMC4498373 DOI: 10.1262/jrd.2014-153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/31/2014] [Indexed: 12/22/2022] Open
Abstract
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.
Collapse
Affiliation(s)
- Masahito Watanabe
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gambini A, De Stefano A, Bevacqua RJ, Karlanian F, Salamone DF. The aggregation of four reconstructed zygotes is the limit to improve the developmental competence of cloned equine embryos. PLoS One 2014; 9:e110998. [PMID: 25396418 PMCID: PMC4232247 DOI: 10.1371/journal.pone.0110998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022] Open
Abstract
Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE's) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE's per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated.
Collapse
Affiliation(s)
- Andrés Gambini
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Adrian De Stefano
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina Jimena Bevacqua
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Florencia Karlanian
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Felipe Salamone
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| |
Collapse
|
13
|
Ohtsuka M. Development of pronuclear injection-based targeted transgenesis in mice through Cre-loxP site-specific recombination. Methods Mol Biol 2014; 1194:3-19. [PMID: 25064095 DOI: 10.1007/978-1-4939-1215-5_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microinjection of DNA into the pronuclei of zygotes is the simplest and most widely used method for generating transgenic (Tg) mice. However, it is always associated with random integration of multiple copies of the transgene, resulting in unstable, low, or no transgene expression due to positional effects and/or repeat-induced gene silencing. In addition, random integration sometimes disrupts an endogenous gene that can affect the phenotypes of Tg mice. Our recently developed pronuclear injection-based targeted transgenesis (PITT) method enables the integration of a single-copy transgene into a predetermined genomic locus through Cre-loxP site-specific recombination. The PITT method enables stable and reliable transgene expression in Tg mice and is also applicable for generating knockdown mice. Therefore, the PITT method could represent next-generation transgenesis that overcomes the pitfalls of conventional transgenesis.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan,
| |
Collapse
|