1
|
McMillan A, Hoffman MR, Xu Y, Wu Z, Thayer E, Peel A, Guymon A, Kanotra S, Salem AK. 3D bioprinted ferret mesenchymal stem cell-laden cartilage grafts for laryngotracheal reconstruction in a ferret surgical model. Biomater Sci 2025. [PMID: 39886992 PMCID: PMC11784027 DOI: 10.1039/d4bm01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Chondrogenic differentiation of mesenchymal stem cells (MSCs) within a three-dimensional (3D) environment can be guided to form cartilage-like tissue in vitro to generate cartilage grafts for implantation. 3D bioprinted, MSC-populated cartilage grafts have the potential to replace autologous cartilage in reconstructive airway surgery. Here, bone marrow-derived ferret MSCs (fMSCs) capable of directed musculoskeletal differentiation were generated for the first time. A multi-material, 3D bioprinted fMSC-laden scaffold was then engineered that was capable of in vitro cartilage regeneration, as evidenced by glycosaminoglycan (GAG) production and collagen II immunohistochemical staining. In vivo implantation of these 3D bioprinted scaffolds in a ferret model of laryngotracheal reconstruction (LTR) demonstrated healing of the defect site, epithelial mucosalization of the inner lumen, and expansion of the airway volume. While the implanted scaffold allowed for reconstruction of the created airway defect, minimal chondrocytes were identified at the implant site. Nevertheless, we have established the ferret as a biomedical research model for airway reconstruction and, although further evaluation is warranted, the generation of fMSCs provides an opportunity for realizing the potential for 3D bioprinted regenerative stem cell platforms in the ferret.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| | - Matthew R Hoffman
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| | - Zongliang Wu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| | - Emma Thayer
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Adreann Peel
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Sohit Kanotra
- Department of Head and Neck Surgery, UCLA, Los Angeles, California, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Zohri M, Arefian E, Azizi Z, Akbari Javar H, Shadboorestan A, Fatahi Y, Chogan F, Taheri M, Karoobi S, Aghaee-Bakhtiari SH, Bonakdar S, Gazori T, Mohammadi S, Saadatpour F, Ghahremani MH. Activation of the BMP2/SMAD4 signaling pathway for enhancing articular cartilage regeneration of mesenchymal stem cells utilizing chitosan/alginate nanoparticles on 3D extracellular matrix scaffold. Int J Biol Macromol 2024; 277:133995. [PMID: 39038571 DOI: 10.1016/j.ijbiomac.2024.133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
This study investigated the efficacy of using chitosan/alginate nanoparticles loaded with recombinant human bone morphogenetic-2 (rhBMP-2) and SMAD4 encoding plasmid to enhance the chondrogenesis of human bone marrow mesenchymal stem cells (hBM-MSCs) seeded on an extracellular matrix (ECM). The research treatments included the stem cells treated with the biological cocktail (BC), negative control (NC), hBM-MSCs with chondrogenic medium (MCM), hBM-MSCs with naked rhBMP-2 and chondrogenic medium (NB/C), and hBM-MSCs with naked rhBMP-2 and chondrogenic medium plus SMAD4 encoding plasmid transfected with polyethyleneimine (PEI) (NB/C/S/P). The cartilage differentiation was performed with real-time quantitative PCR analysis and alizarin blue staining. The data indicated that the biological cocktail (BC) exhibited significantly higher expression of cartilage-related genes compared to significant differences with MCM and negative control (NC) on chondrogenesis. In the (NB/C/S/P), the expression levels of SOX9 and COLX were lower than those in the BC group. The expression pattern of the ACAN gene was similar to COL2A1 changes suggesting that it holds promising potential for cartilage regeneration.
Collapse
Affiliation(s)
- Maryam Zohri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Departments of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Chogan
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Karoobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Mashhad University of Medical Science, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Taraneh Gazori
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 1917733831 Tehran, Iran
| | - Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
3
|
Di Conza G, Barbaro F, Zini N, Spaletta G, Remaggi G, Elviri L, Mosca S, Caravelli S, Mosca M, Toni R. Woven bone formation and mineralization by rat mesenchymal stromal cells imply increased expression of the intermediate filament desmin. Front Endocrinol (Lausanne) 2023; 14:1234569. [PMID: 37732119 PMCID: PMC10507407 DOI: 10.3389/fendo.2023.1234569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Background Disordered and hypomineralized woven bone formation by dysfunctional mesenchymal stromal cells (MSCs) characterize delayed fracture healing and endocrine -metabolic bone disorders like fibrous dysplasia and Paget disease of bone. To shed light on molecular players in osteoblast differentiation, woven bone formation, and mineralization by MSCs we looked at the intermediate filament desmin (DES) during the skeletogenic commitment of rat bone marrow MSCs (rBMSCs), where its bone-related action remains elusive. Results Monolayer cultures of immunophenotypically- and morphologically - characterized, adult male rBMSCs showed co-localization of desmin (DES) with vimentin, F-actin, and runx2 in all cell morphotypes, each contributing to sparse and dense colonies. Proteomic analysis of these cells revealed a topologically-relevant interactome, focused on cytoskeletal and related enzymes//chaperone/signalling molecules linking DES to runx2 and alkaline phosphatase (ALP). Osteogenic differentiation led to mineralized woven bone nodules confined to dense colonies, significantly smaller and more circular with respect to controls. It significantly increased also colony-forming efficiency and the number of DES-immunoreactive dense colonies, and immunostaining of co-localized DES/runx-2 and DES/ALP. These data confirmed pre-osteoblastic and osteoblastic differentiation, woven bone formation, and mineralization, supporting DES as a player in the molecular pathway leading to the osteogenic fate of rBMSCs. Conclusion Immunocytochemical and morphometric studies coupled with proteomic and bioinformatic analysis support the concept that DES may act as an upstream signal for the skeletogenic commitment of rBMSCs. Thus, we suggest that altered metabolism of osteoblasts, woven bone, and mineralization by dysfunctional BMSCs might early be revealed by changes in DES expression//levels. Non-union fractures and endocrine - metabolic bone disorders like fibrous dysplasia and Paget disease of bone might take advantage of this molecular evidence for their early diagnosis and follow-up.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- Unit of Bologna, National Research Council of Italy (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Spaletta
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Roberto Toni
- Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic, Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies (OSTEONET) Unit, Galliera Medical Center (GMC), San Venanzio di Galliera, BO, Italy
- Section IV - Medical Sciences, Academy of Sciences of the Institute of Bologna, Bologna, Italy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Muthu S, Jeyaraman M, Narula A, Ravi VR, Gandi A, Khanna M, Maffulli N, Gupta A. Factors Influencing the Yield of Progenitor Cells in Bone Marrow Aspiration Concentrate—A Retrospective Analysis of 58 Patients. Biomedicines 2023; 11:biomedicines11030738. [PMID: 36979718 PMCID: PMC10045818 DOI: 10.3390/biomedicines11030738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
This study aims to identify the role of subjective factors (age, sex, and comorbidities) and procedure-specific factors (aspiration volume) in influencing the yield of progenitor cells in bone marrow aspiration concentrate (BMAC) harvested from the iliac crest. A retrospective analysis was conducted on 58 patients (male:female = 31:27; mean age: 52.56 ± 18.14 years) who underwent BMAC therapy between January 2020 and June 2021. The factors analyzed include individual factors such as age, sex, and comorbid conditions, and procedural factors such as aspirate volume. The mononuclear cell (MNC) count and colony-forming unit (CFU) assay were used to assess the yield of progenitors in the aspirate. Pearson’s correlation test was performed for the age, aspirate volume, and outcome parameters, such as MNC and CFU. We used the chi-square test to analyze the role of sex and comorbidities on cellular yield. The mean volume of aspirate used for BMAC therapy was 66.65 (±17.82) mL. The mean MNC count of the BMAC was 19.94 (±16.34) × 106 cells, which formed 11 (±12) CFUs. Evidence of statistically significant positive associations was noted between the CFUs developed from the BMAC and the MNC count within them (r = 0.95, p < 0.001). The sex of the individual did not play any significant role in MNC count (p = 0.092) or CFUs formed (p = 0.448). The age of the individual showed evidence of a statistically significant negative association with the MNC count (r = −0.681, p < 0.001) and CFUs (r = −0.693, p < 0.001), as did the aspiration volume with the MNC count (r = −0.740, p < 0.001) and CFUs (r = −0.629, p < 0.001). We also noted a significant reduction in the MNC count (p = 0.002) and CFUs formed (p = 0.004) when the patients presented comorbidities. Individual factors such as age, comorbid conditions, and procedure factors such as aspirate volume significantly affected the yield of progenitor cells in the BMAC. The sex of the individual did not influence the yield of progenitor cells in BMAC.
Collapse
Affiliation(s)
- Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624003, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600056, Tamil Nadu, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Aditya Narula
- Department of Orthopaedics, Aakaar Bone Care, Kanpur 208002, Uttar Pradesh, India
| | - V. R. Ravi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
| | - Avinash Gandi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre (MCRC), Tiruchirappalli 620017, Tamil Nadu, India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Ortopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
- Correspondence: (N.M.); (A.G.)
| | - Ashim Gupta
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
- Correspondence: (N.M.); (A.G.)
| |
Collapse
|
5
|
Aprile D, Alessio N, Squillaro T, Di Bernardo G, Peluso G, Galderisi U. Role of glycosphingolipid SSEA-3 and FGF2 in the stemness and lineage commitment of multilineage differentiating stress enduring (MUSE) cells. Cell Prolif 2022; 56:e13345. [PMID: 36225120 PMCID: PMC9816924 DOI: 10.1111/cpr.13345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Multilineage differentiating Stress Enduring (MUSE) cells are endogenous, stress-resistant stem cells, expressing pluripotency master genes and able to differentiate in cells of the three embryonic sheets. Stage-Specific Embryonic Antigen 3 (SSEA-3), a glycosphingolipid (GSL), is the marker for identifying MUSE cells and is used to isolate this population from mesenchymal stromal cells. GSLs modulate signal transduction by interacting with plasma membrane components. The growth factor FGF2, important for MUSE cells biology, may interact with GSLs. Specific cell surface markers represent an invaluable tool for stem cell isolation. Nonetheless their role, if any, in stem cell biology is poorly investigated. Functions of stem cells, however, depend on niche external cues, which reach cells through surface markers. We addressed the role of SSEA-3 in MUSE cell behaviour, trying to define whether SSEA-3 is just a marker or if it plays a functional role in this cell population by determining if it has any relationship with FGF2 activity. RESULTS We evidenced how the SSEA-3 and FGF2 cooperation affected the self-renewal and clonogenic capacity of MUSE cells. The block of SSEA-3 significantly reduced the multilineage potential of MUSE cells with production of nullipotent clones. CONCLUSIONS We contributed to dissecting the mechanisms underlying MUSE cell properties for establishing successful stem-cell-based therapies and the promotion of MUSE cells as a tool for the in vitro disease model.
Collapse
Affiliation(s)
- Domenico Aprile
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly,Sbarro Institute for Cancer Research and Molecular Medicine, Center for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Gianfranco Peluso
- Faculty of Medicine and SurgerySaint Camillus International University of Health SciencesRomeItaly
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology SectionUniversity of Campania “Luigi Vanvitelli”NaplesItaly,Sbarro Institute for Cancer Research and Molecular Medicine, Center for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA,Genome and Stem Cell Center (GENKOK)Erciyes UniversityKayseriTurkey
| |
Collapse
|
6
|
Ganguly P, Fiz N, Beitia M, Owston HE, Delgado D, Jones E, Sánchez M. Effect of Combined Intraosseous and Intraarticular Infiltrations of Autologous Platelet-Rich Plasma on Subchondral Bone Marrow Mesenchymal Stromal Cells from Patients with Hip Osteoarthritis. J Clin Med 2022; 11:jcm11133891. [PMID: 35807175 PMCID: PMC9267269 DOI: 10.3390/jcm11133891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating condition that significantly impacts its patients and is closely associated with advancing age and senescence. Treatment with autologous platelet rich plasma (PRP) is a novel approach that is increasingly being researched for its effects. Subchondral bone mesenchymal stromal cells (MSCs) are key progenitors that form bone and cartilage lineages that are affected in OA. This study investigated the changes in subchondral bone MSCs before and after combined intraosseous (IO) and intraarticular (IA) PRP infiltration. Patient bone marrow aspirates were collected from 12 patients (four male, eight female) aged 40–86 years old (median 59.5). MSCs were expanded in standard media containing human serum to passage 1 and analysed for their colony-forming potential, senescence status, and gene expression. Hip dysfunction and Osteoarthritis Outcome Score (HOOS) at baseline and 6 months post second infiltration were used to assess the clinical outcomes; seven patients were considered responders and five non-responders. The number of colony-forming MSCs did not increase in the post treatment group, however, they demonstrated significantly higher colony areas (14.5% higher compared to Pre) indicative of enhanced proliferative capacity, especially in older donors (28.2% higher). Senescence assays also suggest that older patients and responders had a higher resistance to senescent cell accumulation. Responder and non-responder MSCs tended to differ in the expression of genes associated with bone formation and cartilage turnover including osteoblast markers, matrix metalloproteinases, and their inhibitors. Taken together, our data show that in hip OA patients, combined IO and IA PRP infiltrations enhanced subchondral MSC proliferative and stress-resistance capacities, particularly in older patients. Future investigation of the potential anti-ageing effect of PRP infiltrations and the use of next-generation sequencing would contribute towards better understanding of the molecular mechanisms associated with OA in MSCs.
Collapse
Affiliation(s)
- Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK; (P.G.); (H.E.O.)
| | - Nicolás Fiz
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10, 01008 Vitoria-Gasteiz, Spain;
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
| | - Heather E. Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK; (P.G.); (H.E.O.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK; (P.G.); (H.E.O.)
- Correspondence: (E.J.); (M.S.)
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10, 01008 Vitoria-Gasteiz, Spain;
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Beato Tomás de Zumarraga 10, 01008 Vitoria-Gasteiz, Spain; (M.B.); (D.D.)
- Correspondence: (E.J.); (M.S.)
| |
Collapse
|
7
|
Characteristics of Mesenchymal Stem Cells Are Independent of Bone Marrow Storage Temperatures. Stem Cells Int 2021; 2021:6864988. [PMID: 34712332 PMCID: PMC8548134 DOI: 10.1155/2021/6864988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cells play an important role in regenerative medicine due to their capability of self-renewal and multipotent differentiation. For research or clinical application, bone marrow aspirates are harvested during elective surgeries to isolate MSCs. If an immediate purification of the MSCs is not possible, the bone marrow must be stored. Therefore, the aim of this study was to investigate possible differences of stem cell characteristics regarding the self-renewal capability, the adipogenic, chondrogenic, and osteogenic differentiation, and the expression of surface antigens after different storage conditions of the bone marrow aspirates. Three groups were analysed: the first group was purified immediately after harvesting, the other two groups were processed after they were stored 18 to 24 hours at 22°C (room temperature) or at 4°C. Comparisons between the groups were performed using the Kruskal-Wallis test for nonparametric data. The final results showed no significant difference between the different storage conditions. Therefore, storage of bone marrow aspirates for 18 to 24 hours at room temperature or 4°C is possible without loss of stem cell characteristics.
Collapse
|
8
|
Shin DI, Kim M, Park DY, Min BH, Yun HW, Chung JY, Min KJ. Motorized Shaver Harvest Results in Similar Cell Yield and Characteristics Compared With Rongeur Biopsy During Arthroscopic Synovium-Derived Mesenchymal Stem Cell Harvest. Arthroscopy 2021; 37:2873-2882. [PMID: 33798652 DOI: 10.1016/j.arthro.2021.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare cell yield and character of synovium-derived mesenchymal stem cell (SDMSC) harvested by 2 different techniques using rongeur and motorized shaver during knee arthroscopy. METHODS This study was performed in 15 patients undergoing partial meniscectomy. Two different techniques were used to harvest SDMSCs in each patient from the synovial membrane at 2 different locations overlying the anterior fat pad, each within 1 minute of harvest time. Cell yield and proliferation rates were evaluated. Cell surface marker analysis was done after passage 2 (P2). Trilineage differentiation potential was evaluated by real-time quantitative polymerase chain reaction and histology. Statistical analysis between the 2 methods was done using the Mann-Whitney U test. RESULTS Wet weight of total harvested tissue was 69.93 (± 20.02) mg versus 378.91 (± 168.87) mg for the rongeur and shaver group, respectively (P < .0001). Mononucleated cell yield was 3.32 (± 0.89) versus 3.18 (± 0.97) × 103 cells/mg, respectively (P = .67). Fluorescence-activated cell sorting analysis revealed similar SDMSC-related cell surface marker expression levels in both groups, with positive expression for CD44, CD73, CD90, and CD105 and decreased expression for CD34 and CD45. Both groups showed similar trilineage differentiation potential in histology. Chondrogenic (SOX9, ACAN, COL2), adipogenic (LPL, PLIN1, PPAR-γ), and osteogenic (OCN, OSX, RUNX2) gene marker expression levels also were similar between both groups. CONCLUSIONS No difference was observed between rongeur biopsy and motorized shaver harvest methods regarding SDMSC yield and cell characteristics. CLINICAL RELEVANCE The current study shows that both rongeur and motorized shaver harvest are safe and effective methods for obtaining SDMSCs. Motorized shaver harvest results in higher volume of tissue acquisition per time, thereby leading to higher number of SDMSCs which may be useful during clinical application.
Collapse
Affiliation(s)
- Dong Il Shin
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Mijin Kim
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyung Jun Min
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
9
|
Kim SA, Park HY, Shin YW, Go EJ, Kim YJ, Kim YC, Shetty AA, Kim SJ. Hemovac blood after total knee arthroplasty as a source of stem cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1406. [PMID: 33313151 PMCID: PMC7723525 DOI: 10.21037/atm-20-2215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background With increasing life expectancy, stem cell therapy is receiving increasing attention. However, its application is restricted by ethical concerns. Hence a need exists for design of safe procedures for stem cell procurement. Here, we investigated whether hemovac blood (HVB) is an appropriate stem cell source. Methods HVB concentrates (HVBCs) from 20 total knee arthroplasty (TKA) patients and bone marrow aspirate (BMA) concentrates (BMACs) from 15 patients who underwent knee cartilage repair were comparatively evaluated. A bone marrow aspiration needle was inserted into the anterior superior iliac spine. Aspiration was performed using a 50-mL syringe, including 4 mL of anticoagulant, followed by centrifugation to obtain BMACs. To obtain HVBCs, blood was aspirated from the hemovac immediately after TKA surgery. Different cell types were enumerated. Isolation of BMA and HVB mononuclear cells was performed using density gradient centrifugation. Non-hematopoietic fibroblast colonies were quantified by colony forming unit-fibroblast assay surface marker analysis of HVB, HVBC, BMA, and BMAC was performed via flow cytometry. Mesenchymal stem cells (MSCs) isolated from HVBCs and BMACs were examined for osteogenic, adipogenic, and chondrogenic differentiation potential. Gene expression analysis was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Results The number of cells from HVB and HVBC was significantly lower than from BMA and BMAC; however, the number of colonies in HVBC and BMAC did not differ significantly (P>0.05). Isolated cells from both sources had a fibroblast-like appearance, adhered to culture flasks, and formed colonies. Under different culture conditions, MSC-specific surface markers (CD29, CD44, CD90, CD105), osteogenic markers [RUNX2, osteopontin, osteocalcin, and alkaline phosphatase (ALP)] and adipogenic markers (PPARγ and C/EBPα) were expressed. Moreover, SOX9, type II collagen, and aggrecan were significantly upregulated upon chondrogenic differentiation. Conclusions HVB from TKA patients is a useful source of stem cells for research.
Collapse
Affiliation(s)
- Seon Ae Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Youn Park
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Woon Shin
- Department of Orthopaedic Surgery, College of Medicine, The Inje University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Nursing Education & Administration, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Chang Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Asode Ananthram Shetty
- Canterbury Christ Church University, Faculty of Health and Wellbeing, Chatham Maritime, Kent, UK
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
A. Everts P, Flanagan II G, Rothenberg J, Mautner K. The Rationale of Autologously Prepared Bone Marrow Aspirate Concentrate for use in Regenerative Medicine Applications. Regen Med 2020. [DOI: 10.5772/intechopen.91310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Cryopreserved bone marrow aspirate concentrate as a cell source for the colony-forming unit fibroblast assay. Cytotherapy 2020; 22:486-493. [DOI: 10.1016/j.jcyt.2020.04.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
|
12
|
Mohanram Y, Zhang J, Tsiridis E, Yang XB. Comparing bone tissue engineering efficacy of HDPSCs, HBMSCs on 3D biomimetic ABM-P-15 scaffolds in vitro and in vivo. Cytotechnology 2020; 72:715-730. [PMID: 32820463 PMCID: PMC7548016 DOI: 10.1007/s10616-020-00414-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) has been the gold standard for bone regeneration. However, the low proliferation rate and long doubling time limited its clinical applications. This study aims to compare the bone tissue engineering efficacy of human dental pulp stem cells (HDPSCs) with HBMSCs in 2D, and 3D anorganic bone mineral (ABM) coated with a biomimetic collagen peptide (ABM-P-15) for improving bone-forming speed and efficacy in vitro and in vivo. The multipotential of both HDPSCs and HBMSCs have been compared in vitro. The bone formation of HDPSCs on ABM-P-15 was tested using in vivo model. The osteogenic potential of the cells was confirmed by alkaline phosphatase (ALP) and immunohistological staining for osteogenic markers. Enhanced ALP, collagen, lipid droplet, or glycosaminoglycans production were visible in HDPSCs and HBMSCs after osteogenic, adipogenic and chondrogenic induction. HDPSC showed stronger ALP staining compared to HBMSCs. Confocal images showed more viable HDPSCs on both ABM-P-15 and ABM scaffolds compared to HBMSCs on similar scaffolds. ABM-P-15 enhanced cell attachment/spreading/bridging formation on ABM-P-15 scaffolds and significantly increased quantitative ALP specific activities of the HDPSCs and HBMSCs. After 8 weeks in vivo implantation in diffusion chamber model, the HDPSCs on ABM-P-15 scaffolds showed extensive high organised collagenous matrix formation that was positive for COL-I and OCN compared to ABM alone. In conclusion, the HDPSCs have a higher proliferation rate and better osteogenic capacity, which indicated the potential of combining HDPSCs with ABM-P-15 scaffolds for improving bone regeneration speed and efficacy.
Collapse
Affiliation(s)
- Yamuna Mohanram
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Jingying Zhang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.,The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, 54124, Thessaloniki, Greece
| | - Xuebin B Yang
- Biomaterials & Tissue Engineering Group, Department of Oral Biology, School of Dentistry, University of Leeds, Level 7, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
13
|
Colony Formation, Migratory, and Differentiation Characteristics of Multipotential Stromal Cells (MSCs) from "Clinically Accessible" Human Periosteum Compared to Donor-Matched Bone Marrow MSCs. Stem Cells Int 2019; 2019:6074245. [PMID: 31871468 PMCID: PMC6906873 DOI: 10.1155/2019/6074245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Periosteum is vital for fracture healing, as a highly vascular and multipotential stromal cell- (MSC-) rich tissue. During surgical bone reconstruction, small fragments of periosteum can be “clinically accessible,” yet periosteum is currently not ultilised, unlike autologous bone marrow (BM) aspirate. This study is aimed at comparing human periosteum and donor-matched iliac crest BM MSC content and characterising MSCs in terms of colony formation, growth kinetics, phenotype, cell migration patterns, and trilineage differentiation capacity. “Clinically accessible” periosteum had an intact outer fibrous layer, containing CD271+ candidate MSCs located perivasculary; the inner cambium was rarely present. Following enzymatic release of cells, periosteum formed significantly smaller fibroblastic colonies compared to BM (6.1 mm2 vs. 15.5 mm2, n = 4, P = 0.0006). Periosteal colonies were more homogenous in size (range 2-30 mm2 vs. 2-54 mm2) and on average 2500-fold more frequent (2.0% vs. 0.0008%, n = 10, P = 0.004) relative to total viable cells. When expanded in vitro, similar growth rates up to passage 0 (P0) were seen (1.8 population doublings (PDs) per day (periosteum), 1.6 PDs per day (BM)); however, subsequently BM MSCs proliferated significantly slower by P4 (4.3 PDs per day (periosteum) vs. 9.3 PDs per day (BM), n = 9, P = 0.02). In early culture, periosteum cells were less migratory at slower speeds than BM cells. Both MSC types exhibited MSC phenotype and trilineage differentiation capacity; however, periosteum MSCs showed significantly lower (2.7-fold) adipogenic potential based on Nile red : DAPI ratios with reduced expression of adipogenesis-related transcripts PPAR-γ. Altogether, these data revealed that “clinically accessible” periosteal samples represent a consistently rich source of highly proliferative MSCs compared to donor-matched BM, which importantly show similar osteochondral capacity and lower adipogenic potential. Live cell tracking allowed determination of unique morphological and migration characteristics of periosteal MSCs that can be used for the development of novel bone graft substitutes to be preferentially repopulated by these cells.
Collapse
|
14
|
The Analysis of In Vivo Aging in Human Bone Marrow Mesenchymal Stromal Cells Using Colony-Forming Unit-Fibroblast Assay and the CD45 lowCD271 + Phenotype. Stem Cells Int 2019; 2019:5197983. [PMID: 31467563 PMCID: PMC6701348 DOI: 10.1155/2019/5197983] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Uncultured mesenchymal stromal cells (MSCs) are increasingly used in therapies; however, the effects of donor age on their biological characteristics and gene expression remain unclear. The aim of this study was to investigate age-related changes in bone marrow (BM) MSCs following minimal or no culture manipulation. Iliac crest BM was aspirated from 67 healthy donors (19-89 years old) and directly used for the colony-forming unit-fibroblast (CFU-F) assay or CD45lowCD271+ cell enumeration. The colonies were analysed for colony area and integrated density (ID) when grown in standard MSC media or media supplemented with human serum from young (YS) or old (OS) donors. There was a notable age-related decline in the number of MSCs per millilitre of BM aspirate revealed by the CFU-F assay (r = −0.527, p < 0.0001) or flow cytometry (r = −0.307, p = 0.0116). Compared to young donors (19-40 years old), colony IDs were significantly lower in older donors (61-89 years old), particularly for smaller-sized colonies (42% lower, p < 0.01). When cultured in media supplemented with OS, young and old donor MSCs formed colonies with lower IDs, by 21%, p < 0.0001, and 27%, p < 0.05, respectively, indicating the formation of smaller sparser colonies. No significant differences in the expression of selected adipogenic, osteogenic, stromal, and bone remodelling genes as well as CD295, CD146, CD106, and connexin 43 surface molecules were found in sorted CD45lowCD271+ MSCs from young and old donors (n = 8 donors each). Altogether, these results show similar trends for age-related decline in BM MSC numbers measured by the CFU-F assay and flow cytometry and reveal age-related effects of human serum on MSC colony formation. No significant differences in selected gene expression in uncultured CD45lowCD271+ MSCs suggest that old donor MSCs may not be inferior in regard to their multipotential functions. Due to large donor-to-donor variation in all donor groups, our data indicate that an individual's chronological age is not a reliable predictor of their MSC number or potency.
Collapse
|
15
|
Myneni VD, McClain-Caldwell I, Martin D, Vitale-Cross L, Marko K, Firriolo JM, Labow BI, Mezey E. Mesenchymal stromal cells from infants with simple polydactyly modulate immune responses more efficiently than adult mesenchymal stromal cells. Cytotherapy 2018; 21:148-161. [PMID: 30595353 DOI: 10.1016/j.jcyt.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/04/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived stromal cells or mesenchymal stromal cells (BMSCs or MSCs, as we will call them in this work) are multipotent progenitor cells that can differentiate into osteoblasts, adipocytes and chondrocytes. In addition, MSCs have been shown to modulate the function of a variety of immune cells. Donor age has been shown to affect the regenerative potential, differentiation, proliferation and anti-inflammatory potency of MSCs; however, the impact of donor age on their immunosuppressive activity is unknown. In this study, we evaluated the ability of MSCs derived from very young children and adults on T-cell suppression and cytokine secretion by monocytes/macrophages. MSCs were obtained from extra digits of children between 10 and 21 months and adults between 28 and 64 years of age. We studied cell surface marker expression, doubling time, lineage differentiation potential and immunosuppressive function of the MSCs. Young MSCs double more quickly and differentiate into bone and fat cells more efficiently than those from older donors. They also form more and dense colonies of fibroblasts (colony forming unit-fibroblast [CFU-F]). MSCs from both young and adult subjects suppressed T-cell proliferation in a mitogen-induced assay at 1:3 and 1:30 ratios. At a 1:30 ratio, however, MSCs from adults did not, but MSCs from infants did suppress T-cell proliferation. In the mixed lymphocyte reaction assay, MSCs from infants produced similar levels of suppression at all three MSC/T-cell ratios, but adult MSCs only inhibited T-cell proliferation at a 1:3 ratio. Cytokine analyses of co-cultures of MSCs and macrophages showed that both adult and young MSCs suppress tumor necrosis factor alpha (TNF-α) and induce interleukin-10 (IL-10) production in macrophage co-culture assay in a similar manner. Overall, this work shows that developing MSCs display a higher level of immunosuppression than mature MSCs.
Collapse
Affiliation(s)
- Vamsee D Myneni
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian McClain-Caldwell
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Martin
- Genomics & Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Lynn Vitale-Cross
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Karoly Marko
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph M Firriolo
- Department of Plastic and Oral Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian I Labow
- Department of Plastic and Oral Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Mezey
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
Marklein RA, Lam J, Guvendiren M, Sung KE, Bauer SR. Functionally-Relevant Morphological Profiling: A Tool to Assess Cellular Heterogeneity. Trends Biotechnol 2018; 36:105-118. [DOI: 10.1016/j.tibtech.2017.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
|
17
|
Phetfong J, Tawonsawatruk T, Seenprachawong K, Srisarin A, Isarankura-Na-Ayudhya C, Supokawej A. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017; 6:414-422. [PMID: 28720606 PMCID: PMC5539302 DOI: 10.1302/2046-3758.67.bjr-2016-0342.r1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objectives Adipose-derived mesenchymal stem cells (ADMSCs) are a promising strategy for orthopaedic applications, particularly in bone repair. Ex vivo expansion of ADMSCs is required to obtain sufficient cell numbers. Xenogenic supplements should be avoided in order to minimise the risk of infections and immunological reactions. Human platelet lysate and human plasma may be an excellent material source for ADMSC expansion. In the present study, use of blood products after their recommended transfusion date to prepare human platelet lysate (HPL) and human plasma (Hplasma) was evaluated for in vitro culture expansion and osteogenesis of ADMSCs. Methods Human ADMSCs were cultured in medium supplemented with HPL, Hplasma and a combination of HPL and Hplasma (HPL+Hplasma). Characteristics of these ADMSCs, including osteogenesis, were evaluated in comparison with those cultured in fetal bovine serum (FBS). Results HPL and HPL+Hplasma had a significantly greater growth-promoting effect than FBS, while Hplasma exhibited a similar growth-promoting effect to that of FBS. ADMSCs cultured in HPL and/or Hplasma generated more colony-forming unit fibroblasts (CFU-F) than those cultured in FBS. After long-term culture, ADMSCs cultured in HPL and/or Hplasma showed reduced cellular senescence, retained typical cell phenotypes, and retained differentiation capacities into osteogenic and adipogenic lineages. Conclusion HPL and Hplasma prepared from blood products after their recommended transfusion date can be used as an alternative and effective source for large-scale ex vivo expansion of ADMSCs. Cite this article: J. Phetfong, T. Tawonsawatruk, K. Seenprachawong, A. Srisarin, C. Isarankura-Na-Ayudhya, A. Supokawej. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture. Bone Joint Res 2017;6:414–422. DOI: 10.1302/2046-3758.67.BJR-2016-0342.R1.
Collapse
Affiliation(s)
- J Phetfong
- Centre for Research and Innovation, Mahidol University, Nakhon Pathom, Thailand
| | - T Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - K Seenprachawong
- Department of Clinical Microscopy, Mahidol University, Nakhon Pathom, Thailand
| | - A Srisarin
- Department of Clinical Microscopy, Mahidol University, Nakhon Pathom, Thailand
| | - C Isarankura-Na-Ayudhya
- Centre for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - A Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
18
|
Murgia A, Veronesi E, Candini O, Caselli A, D’souza N, Rasini V, Giorgini A, Catani F, Iughetti L, Dominici M, Burns JS. Potency Biomarker Signature Genes from Multiparametric Osteogenesis Assays: Will cGMP Human Bone Marrow Mesenchymal Stromal Cells Make Bone? PLoS One 2016; 11:e0163629. [PMID: 27711115 PMCID: PMC5053614 DOI: 10.1371/journal.pone.0163629] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
In skeletal regeneration approaches using human bone marrow derived mesenchymal stromal cells (hBM-MSC), functional evaluation before implantation has traditionally used biomarkers identified using fetal bovine serum-based osteogenic induction media and time courses of at least two weeks. However, emerging pre-clinical evidence indicates donor-dependent discrepancies between these ex vivo measurements and the ability to form bone, calling for improved tests. Therefore, we adopted a multiparametric approach aiming to generate an osteogenic potency assay with improved correlation. hBM-MSC populations from six donors, each expanded under clinical-grade (cGMP) conditions, showed heterogeneity for ex vivo growth response, mineralization and bone-forming ability in a murine xenograft assay. A subset of literature-based biomarker genes was reproducibly upregulated to a significant extent across all populations as cells responded to two different osteogenic induction media. These 12 biomarkers were also measurable in a one-week assay, befitting clinical cell expansion time frames and cGMP growth conditions. They were selected for further challenge using a combinatorial approach aimed at determining ex vivo and in vivo consistency. We identified five globally relevant osteogenic signature genes, notably TGF-ß1 pathway interactors; ALPL, COL1A2, DCN, ELN and RUNX2. Used in agglomerative cluster analysis, they correctly grouped the bone-forming cell populations as distinct. Although donor #6 cells were correlation slope outliers, they contrastingly formed bone without showing ex vivo mineralization. Mathematical expression level normalization of the most discrepantly upregulated signature gene COL1A2, sufficed to cluster donor #6 with the bone-forming classification. Moreover, attenuating factors causing genuine COL1A2 gene down-regulation, restored ex vivo mineralization. This suggested that the signature gene had an osteogenically influential role; nonetheless no single biomarker was fully deterministic whereas all five signature genes together led to accurate cluster analysis. We show proof of principle for an osteogenic potency assay providing early characterization of primary cGMP-hBM-MSC cultures according to their donor-specific bone-forming potential.
Collapse
Affiliation(s)
- Alba Murgia
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Elena Veronesi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
- TPM, Science & Technology Park for Medicine, Mirandola, Modena, Italia
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Anna Caselli
- CVBF - Consorzio per le Valutazioni Biologiche e Farmacologiche, Ospedale Pediatrico Giovanni XXIII, Bari, Italia
| | - Naomi D’souza
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Valeria Rasini
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Andrea Giorgini
- Department of Orthopedic Surgery, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Fabio Catani
- Department of Orthopedic Surgery, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
- TPM, Science & Technology Park for Medicine, Mirandola, Modena, Italia
- * E-mail: (MD); (JSB)
| | - Jorge S. Burns
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italia
- TPM, Science & Technology Park for Medicine, Mirandola, Modena, Italia
- * E-mail: (MD); (JSB)
| |
Collapse
|
19
|
Aizman I, Holland WS, Yang C, Bates D. αSMA Expression in Large Colonies of Colony-Forming Units-Fibroblast as an Early Predictor of Bone Marrow MSC Expandability. CELL MEDICINE 2016; 8:79-85. [PMID: 28003933 DOI: 10.3727/215517916x693357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clinical applications of mesenchymal stromal cells (MSCs) require the manufacture of large cell lots, which involves multiple passages for cell expansion and sometimes genetic modification. MSCs from various sources, including bone marrow (BM), exhibit high donor-to-donor variability in their growth characteristics. This can lead to unpredictable manufacturing outcomes with respect to success or failure of individual lots. Early determination of lot success has the potential to reduce the cost and improve the efficiency of the MSC manufacturing process. However, methods that effectively predict lot growth potential early in the manufacturing process are currently lacking. Here we report that the growth potential of an MSC lot can be predicted a few days after BM plating based on α-smooth muscle actin (αSMA) protein expression in large colony-forming unit-fibroblast (CFU-f) colonies. The proposed prediction method could be a useful tool to prospectively determine MSC lot success or failure.
Collapse
Affiliation(s)
- Irina Aizman
- Department of Research, SanBio, Inc. , Mountain View, CA , USA
| | | | - Cher Yang
- Department of Research, SanBio, Inc. , Mountain View, CA , USA
| | - Damien Bates
- Department of Research, SanBio, Inc., Mountain View, CA, USA; †Clinical Development and Regulatory Affairs, SanBio, Inc., Mountain View, CA, USA
| |
Collapse
|
20
|
Xavier M, Oreffo ROC, Morgan H. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnol Adv 2016; 34:908-923. [PMID: 27236022 DOI: 10.1016/j.biotechadv.2016.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/22/2016] [Indexed: 01/03/2023]
Abstract
Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom.; Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, United Kingdom..
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, United Kingdom..
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom..
| |
Collapse
|
21
|
Xavier M, Rosendahl P, Herbig M, Kräter M, Spencer D, Bornhäuser M, Oreffo ROC, Morgan H, Guck J, Otto O. Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry. Integr Biol (Camb) 2016; 8:616-23. [DOI: 10.1039/c5ib00304k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanical measurements of skeletal stem cells using RT-DC reveal a distinct sub-population within the human bone marrow.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering
- Institute for Life Sciences
- University of Southampton SO17 1BJ
- UK
- Centre for Human Development
| | | | - Maik Herbig
- Biotechnology Center
- Technische Universität Dresden
- Dresden
- Germany
| | - Martin Kräter
- Universitätsklinikum Carl Gustav Carus
- Technische Universität Dresden
- Dresden
- Germany
| | - Daniel Spencer
- Faculty of Physical Sciences and Engineering
- Institute for Life Sciences
- University of Southampton SO17 1BJ
- UK
| | - Martin Bornhäuser
- Universitätsklinikum Carl Gustav Carus
- Technische Universität Dresden
- Dresden
- Germany
| | - Richard O. C. Oreffo
- Centre for Human Development
- Stem Cells and Regeneration
- Institute of Developmental Sciences
- Southampton General Hospital
- UK
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering
- Institute for Life Sciences
- University of Southampton SO17 1BJ
- UK
| | - Jochen Guck
- Biotechnology Center
- Technische Universität Dresden
- Dresden
- Germany
| | - Oliver Otto
- Biotechnology Center
- Technische Universität Dresden
- Dresden
- Germany
| |
Collapse
|
22
|
Stavely R, Robinson AM, Miller S, Boyd R, Sakkal S, Nurgali K. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis. Stem Cell Res Ther 2015; 6:263. [PMID: 26718461 PMCID: PMC4697327 DOI: 10.1186/s13287-015-0254-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022] Open
Abstract
Background The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. This study aims to isolate and characterise guinea pig MSCs and then test their therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation. Methods MSCs from guinea pig bone marrow and adipose tissue were isolated and characterised in vitro. In in vivo experiments, guinea pigs received either TNBS for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1 × 106 cells via enema 3 h after the induction of colitis. Colon tissues were collected 24 and 72 h after TNBS administration to assess the level of inflammation and damage to the ENS. The secretion of transforming growth factor-β1 (TGF-β1) was analysed in MSC conditioned medium by flow cytometry. Results Cells isolated from both sources were adherent to plastic, multipotent and expressed some human MSC surface markers. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In an in vivo model of TNBS-induced colitis, guinea pig bone marrow MSCs were comparatively more efficacious than adipose tissue MSCs in attenuating weight loss, colonic tissue damage and leukocyte infiltration into the mucosa and myenteric plexus. MSCs from both sources were equally neuroprotective in the amelioration of enteric neuronal loss and changes to the neurochemical coding of neuronal subpopulations. MSCs from both sources secreted TGF-β1 which exerted neuroprotective effects in vitro. Conclusions This study is the first evaluating the functional capacity of guinea pig bone marrow and adipose tissue-derived MSCs and providing evidence of their neuroprotective value in an animal model of colitis. In vitro characteristics of MSCs cannot be extrapolated to their therapeutic efficacy. TGF-β1 released by both types of MSCs might have contributed to the attenuation of enteric neuropathy associated with colitis.
Collapse
Affiliation(s)
- Rhian Stavely
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Sarah Miller
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Richard Boyd
- Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton, 3800, Victoria, Australia.
| | - Samy Sakkal
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Western Centre for Health, Research and Education, Sunshine Hospital, 176 Furlong road, Melbourne, 3021, Victoria, Australia.
| |
Collapse
|
23
|
Ekwueme EC, Shah JV, Mohiuddin M, Ghebes CA, Crispim JF, Saris DBF, Fernandes HAM, Freeman JW. Cross-Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro. J Cell Biochem 2015; 117:684-93. [PMID: 26308651 DOI: 10.1002/jcb.25353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022]
Abstract
Tendon and ligament (T/L) pathologies account for a significant portion of musculoskeletal injuries and disorders. Tissue engineering has emerged as a promising solution in the regeneration of both tissues. Specifically, the use of multipotent human mesenchymal stromal cells (hMSC) has shown great promise to serve as both a suitable cell source for tenogenic regeneration and a source of trophic factors to induce tenogenesis. Using four donor sets, we investigated the bidirectional paracrine tenogenic response between human hamstring tenocytes (hHT) and bone marrow-derived hMSC. Cell metabolic assays showed that only one hHT donor experienced sustained notable increases in cell metabolic activity during co-culture. Histological staining confirmed that co-culture induced elevated collagen protein levels in both cell types at varying time-points in two of four donor sets assessed. Gene expression analysis using qPCR showed the varied up-regulation of anabolic and catabolic markers involved in extracellular matrix maintenance for hMSC and hHT. Furthermore, analysis of hMSC/hHT co-culture secretome using a reporter cell line for TGF-β, a potent inducer of tenogenesis, revealed a trend of higher TGF-β bioactivity in hMSC secretome compared to hHT. Finally, hHT cytoskeletal immunostaining confirmed that both cell types released soluble factors capable of inducing favorable tenogenic morphology, comparable to control levels of soluble TGF-β1. These results suggest a potential for TGF-β-mediated signaling mechanism that is involved during the paracrine interplay between the two cell types that is reminiscent of T/L matrix remodeling/turnover. These findings have significant implications in the clinical use of hMSC for common T/L pathologies.
Collapse
Affiliation(s)
- Emmanuel C Ekwueme
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey.,MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Jay V Shah
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mahir Mohiuddin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Corina A Ghebes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - João F Crispim
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Daniël B F Saris
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo A M Fernandes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,UC-Biotech-Cantanhede, Cantanhede, Portugal
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
24
|
Ghebes CA, Kelder C, Schot T, Renard AJ, Pakvis DFM, Fernandes H, Saris DB. Anterior cruciate ligament- and hamstring tendon-derived cells: in vitro differential properties of cells involved in ACL reconstruction. J Tissue Eng Regen Med 2015; 11:1077-1088. [PMID: 25758215 DOI: 10.1002/term.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023]
Abstract
Anterior cruciate ligament (ACL) reconstruction involves the replacement of the torn ligament with a new graft, often a hamstring tendon (HT). Described as similar, the ACL and HT have intrinsic differences related to their distinct anatomical locations. From a cellular perspective, identifying these differences represents a step forward in the search for new cues that enhance recovery after the reconstruction. The purpose of this study was to characterize the phenotype and multilineage potential of ACL- and HT-derived cells. ACL- and HT-derived cells were isolated from tissue harvest from patients undergoing total knee arthroplasty (TKA) or ACL reconstruction. In total, three ACL and three HT donors were investigated. Cell morphology, self-renewal potential (CFU-F), surface marker profiling, expression of tendon/ligament-related markers (PCR) and multilineage potential were analysed for both cell types; both had fibroblast-like morphology and low self-renewal potential. No differences in the expression of tendon/ligament-related genes or a selected set of surface markers were observed between the two cell types. However, differences in their multilineage potential were observed: while ACL-derived cells showed a high potential to differentiate into chondrocytes and adipocytes, but not osteoblasts, HT-derived cells showed poor potential to form adipocytes, chondrocytes and osteoblasts. Our results demonstrated that HT-derived cells have low multilineage potential compared to ACL-derived cells, further highlighting the need for extrinsic signals to fully restore the function of the ACL upon reconstruction. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Corina Adriana Ghebes
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Cindy Kelder
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Thomas Schot
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Auke J Renard
- Department of Orthopaedic Surgery, Medisch Spectrum Twente Hospital, Enschede, The Netherland
| | - Dean F M Pakvis
- Department of Orthopaedics and Traumatology, Orthopaedic Centre OCON, Hengelo, The Netherlands
| | - Hugo Fernandes
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Center for Neuroscience and Cell Biology (CNC), Stem Cells and Drug Screening group, University of Coimbra, Coimbra, Portugal
| | - Daniel B Saris
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Jiang MH, Li G, Liu J, Liu L, Wu B, Huang W, He W, Deng C, Wang D, Li C, Lahn BT, Shi C, Xiang AP. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials 2015; 50:56-66. [PMID: 25736496 DOI: 10.1016/j.biomaterials.2015.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
Abstract
Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.
Collapse
Affiliation(s)
- Mei Hua Jiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guilan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junfeng Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension & Kidney Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bruce T Lahn
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chenggang Shi
- Department of Nephrology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Andy Peng Xiang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
26
|
Bertolo A, Gemperli A, Gruber M, Gantenbein B, Baur M, Pötzel T, Stoyanov J. In vitro cell motility as a potential mesenchymal stem cell marker for multipotency. Stem Cells Transl Med 2014; 4:84-90. [PMID: 25473086 DOI: 10.5966/sctm.2014-0156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use.
Collapse
Affiliation(s)
- Alessandro Bertolo
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Armin Gemperli
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Marco Gruber
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Benjamin Gantenbein
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Martin Baur
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Tobias Pötzel
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland; Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland; Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland; Cantonal Hospital of Lucerne, Lucerne, Switzerland; Swiss Paraplegic Centre, Nottwil, Switzerland
| |
Collapse
|
27
|
Hoch AI, Leach JK. Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 2014; 3:643-52. [PMID: 24682286 DOI: 10.5966/sctm.2013-0196] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem/stromal cells (MSCs) have demonstrated success in the clinical treatment of hematopoietic pathologies and cardiovascular disease and are the focus of treating other diseases of the musculoskeletal, digestive, integumentary, and nervous systems. However, during the requisite two-dimensional (2D) expansion to achieve a clinically relevant number of cells, MSCs exhibit profound degeneration in progenitor potency. Proliferation, multilineage potential, and colony-forming efficiency are fundamental progenitor properties that are abrogated by extensive monolayer culture. To harness the robust therapeutic potential of MSCs, a consistent, rapid, and minimally detrimental expansion method is necessary. Alternative expansion efforts have exhibited promise in the ability to preserve MSC progenitor potency better than the 2D paradigm by mimicking features of the native bone marrow niche. MSCs have been successfully expanded when stimulated by growth factors, under reduced oxygen tension, and in three-dimensional bioreactors. MSC therapeutic value can be optimized for clinical applications by combining system inputs to tailor culture parameters for recapitulating the niche with probes that nondestructively monitor progenitor potency. The purpose of this review is to explore how modulations in the 2D paradigm affect MSC progenitor properties and to highlight recent efforts in alternative expansion techniques.
Collapse
Affiliation(s)
- Allison I Hoch
- Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
| | | |
Collapse
|
28
|
Cordeiro-Spinetti E, de Mello W, Trindade LS, Taub DD, Taichman RS, Balduino A. Human bone marrow mesenchymal progenitors: perspectives on an optimized in vitro manipulation. Front Cell Dev Biol 2014; 2:7. [PMID: 25364715 PMCID: PMC4207019 DOI: 10.3389/fcell.2014.00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/24/2014] [Indexed: 01/14/2023] Open
Abstract
When it comes to regenerative medicine, mesenchymal stem cells (MSCs) are considered one of the most promising cell types for use in many cell therapies and bioengineering protocols. The International Society of Cellular Therapy recommended minimal criteria for defining multipotential MSC is based on adhesion and multipotency in vitro, and the presence or absence of select surface markers. Though these criteria help minimize discrepancies and allow some comparisons of data generated in different laboratories, the conditions in which cells are isolated and expanded are often not considered. Herein, we propose and recommend a few procedures to be followed to facilitate the establishment of quality control standards when working with mesenchymal progenitors isolation and expansion. Following these procedures, the classic Colony-Forming Unit-Fibroblast (CFU-f) assay is revisited and three major topics are considered to define conditions and to assist on protocol optimization and data interpretation. We envision that the creation of a guideline will help in the identification and isolation of long-term stem cells and short-term progenitors to better explore their regenerative potential for multiple therapeutic purposes.
Collapse
Affiliation(s)
| | - Wallace de Mello
- LaBioTeC, Universidade Veiga de Almeida Rio de Janeiro, Brazil ; Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz Fiocruz, Rio de Janeiro, Brazil
| | | | - Dennis D Taub
- Department of Vetarans Affairs, Hematology and Immunology Research, Washington DC Veterans Affairs Medical Center Washington, DC, USA
| | - Russell S Taichman
- School of Dentistry, Department of Periodontics and Oral Medicine, University of Michigan Ann Arbor, MI, USA
| | - Alex Balduino
- LaBioTeC, Universidade Veiga de Almeida Rio de Janeiro, Brazil ; Excellion Serviços Biomédicos Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Shipounova IN, Petinati NA, Bigildeev AE, Sats NV, Drize NJ, Kuzmina LA, Parovichnikova EN, Savchenko VG. Hierarchy of mesenchymal stem cells: Comparison of multipotentmesenchymal stromal cells with fibroblast colony forming units. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.68a1007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|