1
|
Portela LMF, Constantino FB, Camargo ACL, Santos SAA, Colombelli KT, Fioretto MN, Barata LA, Silva EJR, Scarano WR, Felisbino SL, Moreno CS, Justulin LA. Early-life origin of prostate cancer through deregulation of miR-206 networks in maternally malnourished offspring rats. Sci Rep 2023; 13:18685. [PMID: 37907720 PMCID: PMC10618455 DOI: 10.1038/s41598-023-46068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. While maternal malnutrition has been proposed as a risk factor for the developmental programming of prostate cancer (PCa), the molecular mechanisms remain poorly understood. Using RNA-seq data, we demonstrated deregulation of miR-206-Plasminogen (PLG) network in the ventral prostate (VP) of young maternally malnourished offspring. RT-qPCR confirmed the deregulation of the miR-206-PLG network in the VP of young and old offspring rats. Considering the key role of estrogenic signaling pathways in prostate carcinogenesis, in vitro miRNA mimic studies also revealed a negative correlation between miR-206 and estrogen receptor α (ESR1) expression in PNT2 cells. Together, we demonstrate that early life estrogenization associated with the deregulation of miR-206 networks can contribute to the developmental origins of PCa in maternally malnourished offspring. Understanding the molecular mechanisms by which early life malnutrition affects offspring health can encourage the adoption of a governmental policy for the prevention of non-communicable chronic diseases related to the DOHaD concept.
Collapse
Affiliation(s)
- Luiz M F Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Flavia B Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ana C L Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Sérgio A A Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Luísa A Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, Unesp, Botucatu, Brazil
| | - Wellerson R Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Sergio L Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
2
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
3
|
Solodneva EV, Kuznetsov SB, Velieva AE, Stolpovsky YA. Molecular-Genetic Bases of Mammary Gland Development Using the Example of Cattle and Other Animal Species: I. Embryonic and Pubertal Developmental Stage. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422080087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
5
|
Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. J Cardiovasc Dev Dis 2021; 8:jcdd8050056. [PMID: 34068962 PMCID: PMC8156480 DOI: 10.3390/jcdd8050056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on Tbx2, Tbx3 and Tbx5 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.
Collapse
|
6
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
7
|
Ge P, Ma H, Li Y, Ni A, Isa AM, Wang P, Bian S, Shi L, Zong Y, Wang Y, Jiang L, Hagos H, Yuan J, Sun Y, Chen J. Identification of microRNA-Associated-ceRNA Networks Regulating Crop Milk Production in Pigeon ( Columba livia). Genes (Basel) 2020; 12:genes12010039. [PMID: 33396684 PMCID: PMC7824448 DOI: 10.3390/genes12010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Pigeon belongs to altrices. Squab cannot forage independently. Nutrition can only be obtained from crop milk secreted by male and female pigeon. miRNA could regulate many biological events. However, the roles of miRNA and ceRNA in regulating crop milk production are still unknown. In this study, we investigated the miRNAs expression profile of female pigeon crop, explored the potential key genes, and found the regulatory mechanisms of crop milk production. A total of 71 miRNAs were identified differentially expressed significantly. Meanwhile, miR-20b-5p, miR-146b-5p, miR-21-5p, and miR-26b-5p were found to be the key miRNAs regulating lactation. Target genes of these miRNAs participated mainly in cell development; protein and lipid synthesis; and ion signaling processes, such as cell-cell adhesion, epithelial cell morphogenesis, calcium signaling pathway, protein digestion, and absorption. In the ceRNA network, miR-193-5p was located in the central position, and miR-193-5p/CREBRF/LOC110355588, miR-460b-5p/GRHL2/MSTRG.132954, and miR-193-5p/PIK3CD/LOC110355588 regulatory axes were believed to affect lactation. Collectively, our findings enriched the miRNA expression profile of pigeon and provided novel insights into the microRNA-associated-ceRNA networks regulating crop milk production in pigeon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-628-160-05
| |
Collapse
|
8
|
Wang J, Aydoğdu E, Mukhopadhyay S, Helguero LA, Williams C. A miR-206 regulated gene landscape enhances mammary epithelial differentiation. J Cell Physiol 2019; 234:22220-22233. [PMID: 31069797 PMCID: PMC6767383 DOI: 10.1002/jcp.28789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
miR‐206 is known to suppress breast cancer. However, while it is expressed in mammary stem cells, its function in such nontumor cells is not well understood. Here, we explore the role of miR‐206 in undifferentiated, stem‐like mammary cells using the murine mammary differentiation model HC11, genome‐wide gene expression analysis, and functional assays. We describe the miR‐206‐regulated gene landscape and propose a network whereby miR‐206 suppresses tumor development. We functionally demonstrate that miR‐206 in nontumor stem‐like cells induces a G1–S cell cycle arrest, and reduces colony formation and epithelial‐to‐mesenchymal transition markers. Finally, we show that addition of miR‐206 accelerates the mammary differentiation process along with related accumulation of lipids. We conclude that miR‐206 impacts a network of signaling pathways, and acts as a regulator of proliferation, stemness, and mammary cell differentiation in nontumor stem‐like mammary cells. Our study provides a broad insight into the breast cancer suppressive functions of miR‐206.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratories, Stockholm, Sweden
| | - Eylem Aydoğdu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratories, Stockholm, Sweden
| |
Collapse
|
9
|
Howard EW, Yang X. microRNA Regulation in Estrogen Receptor-Positive Breast Cancer and Endocrine Therapy. Biol Proced Online 2018; 20:17. [PMID: 30214383 PMCID: PMC6134714 DOI: 10.1186/s12575-018-0082-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
As de novo and acquired resistance to standard first line endocrine therapies is a growing clinical challenge for estrogen receptor-positive (ER+) breast cancer patients, understanding the mechanisms of resistance is critical to develop novel therapeutic strategies to prevent therapeutic resistance and improve patient outcomes. The widespread post-transcriptional regulatory role that microRNAs (miRNAs) can have on various oncogenic pathways has been well-documented. In particular, several miRNAs are reported to suppress ERα expression via direct binding with the 3’ UTR of ESR1 mRNA, which can confer resistance to estrogen/ERα-targeted therapies. In turn, estrogen/ERα activation can modulate miRNA expression, which may contribute to ER+ breast carcinogenesis. Given the reported oncogenic and tumor suppressor functions of miRNAs in ER+ breast cancer, the targeted regulation of specific miRNAs is emerging as a promising strategy to treat ER+ breast cancer and significantly improve patient responsiveness to endocrine therapies. In this review, we highlight the major miRNA-ER regulatory mechanisms in context with ER+ breast carcinogenesis, as well as the critical miRNAs that contribute to endocrine therapy resistance or sensitivity. Collectively, this comprehensive review of the current literature sheds light on the clinical applications and challenges associated with miRNA regulatory mechanisms and novel miRNA targets that may have translational value as potential therapeutics for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, 500 Laureate Way, NRI 4301, Kannapolis, North Carolina 28081 USA
| |
Collapse
|
10
|
Yang B, Jiao B, Ge W, Zhang X, Wang S, Zhao H, Wang X. Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics 2018; 19:605. [PMID: 30103699 PMCID: PMC6090732 DOI: 10.1186/s12864-018-4974-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND It is known that long non-coding RNAs (lncRNAs) play an important role in various biological processes, including cell proliferation, differentiation and apoptosis. However, their functions and profiles in lactation cycle of dairy cows are largely unknown. In this study, lncRNA-seq technique was employed to compare the expression profiles of lncRNAs and mRNAs from Chinese Holstein mammary gland in dry and lactation period. RESULT Totally 3746 differentially expressed lncRNAs (DELs) and 2890 differentially expressed genes (DEGs) were identified from the dry and lactation mammary glands of Holstein cows. Functional enrichment analysis on target genes of lncRNAs indicated that these genes were involved in lactation-related signaling pathways, including cell cycle, JAK-STAT, cell adhesion, and PI3K-Akt signaling pathways. Additionally, the interaction between lncRNAs and their potential miRNAs was predicted and partly verified. The result indicated that the lactation-associated miR-221 might interact with lncRNAs TCONS_00040268, TCONS_00137654, TCONS_00071659 and TCONS_00000352, which revealed that these lncRNAs might be important regulators for lactation cycle. CONCLUSION This study provides a resource for lncRNA research on lactation cycle of bovine mammary gland. Besides, the interaction between lncRNAs and the specific miRNA is revealed. It expands our knowledge about lncRNA and miRNA biology as well as contributes to clarify the regulation of lactation cycle of bovine mammary gland.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Lab of Feed and Animal Nutrition, Tongren Polytechnic College, Tongren, 554300, Guizhou, China
| | - Beilei Jiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaolan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shanhe Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Mobuchon L, Le Guillou S, Marthey S, Laubier J, Laloë D, Bes S, Le Provost F, Leroux C. Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland. PLoS One 2017; 12:e0185511. [PMID: 29281677 PMCID: PMC5744907 DOI: 10.1371/journal.pone.0185511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Oil supplementation in dairy cattle diets is used to modulate milk fat composition, as well as the expression of mammary lipogenic genes, whose regulation remains unclear. MiRNAs are small non-coding RNA considered as crucial regulators of gene expression, offering clues to explain the mechanism underlying gene nutriregulation. The present study was designed to identify miRNAs whose expression in the cow mammary gland is modulated by sunflower oil supplementation. MiRNomes were obtained using RNAseq technology from the mammary gland of lactating cows receiving a low forage diet, supplemented or not with 4% sunflower oil. Among the 272 miRNAs characterized, eight were selected for RT-qPCR validations, showing the significant down-regulation of miR-142-5p and miR-20a-5p by sunflower supplementation. These two miRNAs are predicted to target genes whose expression was reported as differentially expressed by sunflower supplementation. Among their putative targets, ELOVL6 gene involved in lipid metabolism has been studied. However, a first analysis did not show its significant down-regulation, in response to the over-expression of miR-142-5p, of miR-20a-5p, or both, in a bovine mammary epithelial cell line. However, a clearer understanding of the miRNA expression by lipid supplementation would help to decipher the regulation of lactating cow mammary gland in response to nutrition.
Collapse
Affiliation(s)
- Lenha Mobuchon
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- INRA, UMR1213 Herbivores, Saint Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | | | - Sylvain Marthey
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johann Laubier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Denis Laloë
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sébastien Bes
- INRA, UMR1213 Herbivores, Saint Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | | | - Christine Leroux
- INRA, UMR1213 Herbivores, Saint Genès Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
12
|
Veltmaat JM. Prenatal Mammary Gland Development in the Mouse: Research Models and Techniques for Its Study from Past to Present. Methods Mol Biol 2017; 1501:21-76. [PMID: 27796947 DOI: 10.1007/978-1-4939-6475-8_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mammary gland development starts during prenatal life, when at designated positions along the ventrolateral boundary of the embryonic or fetal trunk, surface ectodermal cells coalesce to form primordia for mammary glands, instead of differentiating into epidermis. With the wealth of genetically engineered mice available as research models, our understanding of the prenatal phase of mammary development has recently greatly advanced. This understanding includes the recognition of molecular and mechanistic parallels between prenatal and postnatal mammary morphogenesis and even tumorigenesis, much of which can moreover be extrapolated to human. This makes the murine embryonic mammary gland a useful model for a myriad of questions pertaining to normal and pathological breast development. Hence, unless indicated otherwise, this review describes embryonic mammary gland development in mouse only, and lists mouse models that have been examined for defects in embryonic mammary development. Techniques that originated in the field of developmental biology, such as explant culture and tissue recombination, were adapted specifically to research on the embryonic mammary gland. Detailed protocols for these techniques have recently been published elsewhere. This review describes how the development and adaptation of these techniques moved the field forward from insights on (comparative) morphogenesis of the embryonic mammary gland to the understanding of tissue and molecular interactions and their regulation of morphogenesis and functional development of the embryonic mammary gland. It is here furthermore illustrated how generic molecular biology and biochemistry techniques can be combined with these older, developmental biology techniques, to address relevant research questions. As such, this review should provide a solid starting point for those wishing to familiarize themselves with this fascinating and important subdomain of mammary gland biology, and guide them in designing a relevant research strategy.
Collapse
Affiliation(s)
- Jacqueline M Veltmaat
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.
| |
Collapse
|
13
|
Lee JM, Cho KW, Kim EJ, Tang Q, Kim KS, Tickle C, Jung HS. A contrasting function for miR-137 in embryonic mammogenesis and adult breast carcinogenesis. Oncotarget 2016. [PMID: 26215676 PMCID: PMC4673145 DOI: 10.18632/oncotarget.4218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are differentially expressed in breast cancer cells and have been implicated in cancer formation, tumour invasion and metastasis. We investigated the miRNA expression profiles in the developing mammary gland. MiR-137 was expressed prominently in the developing mammary gland. When the miR-137 was over-expressed in the embryo, the mammary epithelium became thickened. Moreover, genes associated with mammary gland formation such as Tbx3 and Lef1 were not expressed. This suggests that miR-137 induces gland formation and invasion. When miR-137 was over-expressed in MDA-MB-231 cells, their ability to form tumours in adult mice was significantly reduced. These data support miR-137 decides epithelial cell behavior in the human breast cancer. It also suggests that miR-137 is a potential therapeutic target for amelioration of breast cancer progression.
Collapse
Affiliation(s)
- Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Kyoung-Won Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Qinghuang Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, Korea
| | - Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
14
|
Regulation of the T-box transcription factor Tbx3 by the tumour suppressor microRNA-206 in breast cancer. Br J Cancer 2016; 114:1125-34. [PMID: 27100732 PMCID: PMC4865973 DOI: 10.1038/bjc.2016.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Tbx3 transcription factor is over-expressed in breast cancer, where it has been implicated in proliferation, migration and regulation of the cancer stem cell population. The mechanisms that regulate Tbx3 expression in cancer have not been fully explored. In this study, we demonstrate that Tbx3 is repressed by the tumour suppressor miR-206 in breast cancer cells. METHODS Bioinformatics prediction programmes and luciferase reporter assays were used to demonstrate that miR-206 negatively regulates Tbx3. We examined the impact of miR-206 on Tbx3 expression in breast cancer cells using miR-206 mimic and inhibitor. Gene/protein expression was examined by quantitative reverse-transcription-PCR and immunoblotting. The effects of miR-206 and Tbx3 on apoptosis, proliferation, invasion and cancer stem cell population was investigated by cell-death detection, colony formation, 3D-Matrigel and tumorsphere assays. RESULTS In this study, we examined the regulation of Tbx3 by miR-206. We demonstrate that Tbx3 is directly repressed by miR-206, and that this repression of Tbx3 is necessary for miR-206 to inhibit breast tumour cell proliferation and invasion, and decrease the cancer stem cell population. Moreover, Tbx3 and miR-206 expression are inversely correlated in human breast cancer. Kaplan-Meier analysis indicates that patients exhibiting a combination of high Tbx3 and low miR-206 expression have a lower probability of survival when compared with patients with low Tbx3 and high miR-206 expression. These studies uncover a novel mechanism of Tbx3 regulation and identify a new target of the tumour suppressor miR-206. CONCLUSIONS The present study identified Tbx3 as a novel target of tumour suppressor miR-206 and characterised the miR-206/Tbx3 signalling pathway, which is involved in proliferation, invasion and maintenance of the cancer stem cell population in breast cancer cells. Our results suggest that restoration of miR-206 in Tbx3-positive breast cancer could be exploited for therapeutic benefit.
Collapse
|
15
|
MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. Int J Mol Sci 2015; 16:1448-65. [PMID: 25580536 PMCID: PMC4307312 DOI: 10.3390/ijms16011448] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this study, we report the identification and characterization of miRNAs in the lactating mammary gland in two distinct pig breeds, Jinhua and Yorkshire. Many miRNAs were detected as significantly differentially expressed between the two libraries. Among the differentially expressed miRNAs, many are known to be related to mammary gland development and lactation by interacting with putative target genes in previous studies. These findings suggest that miRNA expression patterns may contribute significantly to target mRNA regulation and influence mammary gland development and peak lactation performance. The data we obtained provide useful information about the roles of miRNAs in the biological processes of lactation and the mechanisms of target gene expression and regulation.
Collapse
|
16
|
Min W, Wang B, Li J, Han J, Zhao Y, Su W, Dai Z, Wang X, Ma Q. The expression and significance of five types of miRNAs in breast cancer. Med Sci Monit Basic Res 2014; 20:97-104. [PMID: 25047098 PMCID: PMC4117676 DOI: 10.12659/msmbr.891246] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to investigate the expression and significance of 5 types of miRNAs in breast cancer to provide a theoretical and practical foundation for using these miRNAs in the diagnosis and treatment of breast cancer, thereby improving medical services. Material/Methods Stem-loop real-time RT-PCR was used to detect the expression levels of miR-145, miR-21, miR-10b, miR-125a, and miR-206 in 35 cases of breast cancer and adjacent normal breast tissues, and to analyze the relationship of miRNAs expression with clinicopathological features of breast cancer. The expression levels of estrogen receptor (ER) and progesterone receptor (PR) were examined by immunohistochemistry. Fluorescence in situ hybridization was used for the detection of HER-2 and TOP 2A. Results The expression levels of miR-145, miR-125a, and miR-206 in breast cancer were lower than those in adjacent normal tissues. MiR-145 was negatively correlated with tumor size, lymph node metastasis, ER, HER-2, and TOP 2A (P<0.05), regardless of age, menstruation, and PR. MiR-125a was correlated with negative node status, negative HER-2 status (P<0.05), whereas tumor size, age, menstruation, ER, and PR were independent factors. MiR-206 expression was correlated with negative ER status, negative PR status, and negative HER-2 status (P<0.05), regardless of age, menstruation, lymph node metastasis, and TOP 2A. MiR-21 and miR-10b expression in breast cancer tissues was significantly higher than that in adjacent tissues (P<0.05). MiR-21 in post-menstrual patients with lymph node metastasis was highly expressed (P<0.05), and had no correlations with tumor size, ER, PR, and TOP 2A expression. MiR-10b expression was positively correlated with breast cancer tumor size, lymph node metastasis, and TOP 2A status (P<0.05), but had no correlations with age, menstruation, ER, PR, and HER-2. Conclusions MiR-145, miR-21, miR-10b, miR-125a, and miR-206 may play important roles in breast cancer development and invasion.
Collapse
Affiliation(s)
- Weili Min
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Baofeng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jia Han
- Health Science Center, Xi'an Jiaotong University School of Medicine, Xi'an, China (mainland)
| | - Yang Zhao
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Wenjun Su
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Xijing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Qingyong Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| |
Collapse
|
17
|
Min W, Wang B, Li J, Han J, Zhao Y, Su W, Dai Z, Wang X, Ma Q. The expression and significance of five types of miRNAs in breast cancer. Med Sci Monit Basic Res 2014. [PMID: 25047098 DOI: 10.12659/m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression and significance of 5 types of miRNAs in breast cancer to provide a theoretical and practical foundation for using these miRNAs in the diagnosis and treatment of breast cancer, thereby improving medical services. MATERIAL/METHODS Stem-loop real-time RT-PCR was used to detect the expression levels of miR-145, miR-21, miR-10b, miR-125a, and miR-206 in 35 cases of breast cancer and adjacent normal breast tissues, and to analyze the relationship of miRNAs expression with clinicopathological features of breast cancer. The expression levels of estrogen receptor (ER) and progesterone receptor (PR) were examined by immunohistochemistry. Fluorescence in situ hybridization was used for the detection of HER-2 and TOP 2A. RESULTS The expression levels of miR-145, miR-125a, and miR-206 in breast cancer were lower than those in adjacent normal tissues. MiR-145 was negatively correlated with tumor size, lymph node metastasis, ER, HER-2, and TOP 2A (P<0.05), regardless of age, menstruation, and PR. MiR-125a was correlated with negative node status, negative HER-2 status (P<0.05), whereas tumor size, age, menstruation, ER, and PR were independent factors. MiR-206 expression was correlated with negative ER status, negative PR status, and negative HER-2 status (P<0.05), regardless of age, menstruation, lymph node metastasis, and TOP 2A. MiR-21 and miR-10b expression in breast cancer tissues was significantly higher than that in adjacent tissues (P<0.05). MiR-21 in post-menstrual patients with lymph node metastasis was highly expressed (P<0.05), and had no correlations with tumor size, ER, PR, and TOP 2A expression. MiR-10b expression was positively correlated with breast cancer tumor size, lymph node metastasis, and TOP 2A status (P<0.05), but had no correlations with age, menstruation, ER, PR, and HER-2. CONCLUSIONS MiR-145, miR-21, miR-10b, miR-125a, and miR-206 may play important roles in breast cancer development and invasion.
Collapse
Affiliation(s)
- Weili Min
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Baofeng Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Jia Han
- Health Science Center, Xi'an Jiaotong University School of Medicine, Xi'an, China (mainland)
| | - Yang Zhao
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Wenjun Su
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Zhijun Dai
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Xijing Wang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| | - Qingyong Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (mainland)
| |
Collapse
|
18
|
Palumbo S, Miracco C, Pirtoli L, Comincini S. Emerging roles of microRNA in modulating cell-death processes in malignant glioma. J Cell Physiol 2014; 229:277-86. [PMID: 23929496 DOI: 10.1002/jcp.24446] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. In mammals, their function mainly represses the mRNA transcripts via imperfect complementary sequences in the 3'UTR of target mRNAs. Several miRNAs have been recently reported to be involved in modulation of different genes in tumors, including glioblastoma, the most frequent brain tumor in adults. Despite the improvements in treatments, survival of patients remains poor, and glioblastoma is one of the most lethal form of human cancer. To define novel strategies against this tumor, emerging research investigated miRNAs involvement in glioblastoma. In particular, this review is focused on miRNAs involved on the two principal programmed cell-death, apoptosis and autophagy, recently described from the literature. Moreover, the discovery of miRNAs role in glioma cell-death pathways has also revealed a new category of therapeutic targets, fundamental for this kind of tumor.
Collapse
Affiliation(s)
- Silvia Palumbo
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | | |
Collapse
|
19
|
Regulation of breast cancer and bone metastasis by microRNAs. DISEASE MARKERS 2013; 35:369-87. [PMID: 24191129 PMCID: PMC3809754 DOI: 10.1155/2013/451248] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 01/05/2023]
Abstract
Breast cancer progression including bone metastasis is a complex process involving numerous changes in gene expression and function. MicroRNAs (miRNAs) are small endogenous noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs posttranscriptionally, often affecting a number of gene targets simultaneously. Alteration in expression of miRNAs is common in human breast cancer, possessing with either oncogenic or tumor suppressive activity. The expression and the functional role of several miRNAs (miR-206, miR-31, miR-27a/b, miR-21, miR-92a, miR-205, miR-125a/b, miR-10b, miR-155, miR-146a/b, miR-335, miR-204, miR-211, miR-7, miR-22, miR-126, and miR-17) in breast cancer has been identified. In this review we summarize the experimentally validated targets of up- and downregulated miRNAs and their regulation in breast cancer and bone metastasis for diagnostic and therapeutic purposes.
Collapse
|