1
|
A scaffold-free approach to cartilage tissue generation using human embryonic stem cells. Sci Rep 2021; 11:18921. [PMID: 34584110 PMCID: PMC8478992 DOI: 10.1038/s41598-021-97934-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
Articular cartilage functions as a shock absorber and facilitates the free movement of joints. Currently, there are no therapeutic drugs that promote the healing of damaged articular cartilage. Limitations associated with the two clinically relevant cell populations, human articular chondrocytes and mesenchymal stem cells, necessitate finding an alternative cell source for cartilage repair. Human embryonic stem cells (hESCs) provide a readily accessible population of self-renewing, pluripotent cells with perceived immunoprivileged properties for cartilage generation. We have developed a robust method to generate 3D, scaffold-free, hyaline cartilage tissue constructs from hESCs that are composed of numerous chondrocytes in lacunae, embedded in an extracellular matrix containing Type II collagen, sulphated glycosaminoglycans and Aggrecan. The elastic (Young's) modulus of the hESC-derived cartilage tissue constructs (0.91 ± 0.08 MPa) was comparable to full-thickness human articular cartilage (0.87 ± 0.09 MPa). Moreover, we have successfully scaled up the size of the scaffold-free, 3D hESC-derived cartilage tissue constructs to between 4.5 mm and 6 mm, thus enhancing their suitability for clinical application.
Collapse
|
2
|
Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. Int J Biomater 2021; 2021:5583815. [PMID: 34239571 PMCID: PMC8235960 DOI: 10.1155/2021/5583815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.
Collapse
|
3
|
Longoni A, Pennings I, Cuenca Lopera M, van Rijen MHP, Peperzak V, Rosenberg AJWP, Levato R, Gawlitta D. Endochondral Bone Regeneration by Non-autologous Mesenchymal Stem Cells. Front Bioeng Biotechnol 2020; 8:651. [PMID: 32733861 PMCID: PMC7363768 DOI: 10.3389/fbioe.2020.00651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Mimicking endochondral bone formation is a promising strategy for bone regeneration. To become a successful therapy, the cell source is a crucial translational aspect. Typically, autologous cells are used. The use of non-autologous mesenchymal stromal cells (MSCs) represents an interesting alternative. Nevertheless, non-autologous, differentiated MSCs may trigger an undesired immune response, hampering bone regeneration. The aim of this study was to unravel the influence of the immune response on endochondral bone regeneration, when using xenogeneic (human) or allogeneic (Dark Agouti) MSCs. To this end, chondrogenically differentiated MSCs embedded in a collagen carrier were implanted in critical size femoral defects of immunocompetent Brown Norway rats. Control groups were included with syngeneic/autologous (Brown Norway) MSCs or a cell-free carrier. The amount of neo-bone formation was proportional to the degree of host-donor relatedness, as no full bridging of the defect was observed in the xenogeneic group whereas 2/8 and 7/7 bridges occurred in the allogeneic and the syngeneic group, respectively. One week post-implantation, the xenogeneic grafts were invaded by pro-inflammatory macrophages, T lymphocytes, which persisted after 12 weeks, and anti-human antibodies were developed. The immune response toward the allogeneic graft was comparable to the one evoked by the syngeneic implants, aside from an increased production of alloantibodies, which might be responsible for the more heterogeneous bone formation. Our results demonstrate for the first time the feasibility of using non-autologous MSC-derived chondrocytes to elicit endochondral bone regeneration in vivo. Nevertheless, the pronounced immune response and the limited bone formation observed in the xenogeneic group undermine the clinical relevance of this group. On the contrary, although further research on how to achieve robust bone formation with allogeneic cells is needed, they may represent an alternative to autologous transplantation.
Collapse
Affiliation(s)
- Alessia Longoni
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, Netherlands
| | - I Pennings
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, Netherlands
| | - Marta Cuenca Lopera
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M H P van Rijen
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Victor Peperzak
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - A J W P Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Riccardo Levato
- Regenerative Medicine Center Utrecht, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
A comparative study of cartilage engineered constructs in immunocompromised, humanized and immunocompetent mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Takahashi T, Sato M, Toyoda E, Maehara M, Takizawa D, Maruki H, Tominaga A, Okada E, Okazaki K, Watanabe M. Rabbit xenogeneic transplantation model for evaluating human chondrocyte sheets used in articular cartilage repair. J Tissue Eng Regen Med 2018; 12:2067-2076. [PMID: 30058138 PMCID: PMC6221121 DOI: 10.1002/term.2741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/27/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022]
Abstract
Research on cartilage regeneration has developed novel sources for human chondrocytes and new regenerative therapies, but appropriate animal models for translational research are needed. Although rabbit models are frequently used in such studies, the availability of immunocompromised rabbits is limited. Here, we investigated the usefulness of an immunosuppressed rabbit model to evaluate directly the efficacy of human chondrocyte sheets through xenogeneic transplantation. Human chondrocyte sheets were transplanted into knee osteochondral defects in Japanese white rabbits administered with immunosuppressant tacrolimus at a dosage of 0.8 or 1.6 mg/kg/day for 4 weeks. Histological evaluation at 4 weeks after transplantation in rabbits administered 1.6 mg/kg/day showed successful engraftment of human chondrocytes and cartilage regeneration involving a mixture of hyaline cartilage and fibrocartilage. No human chondrocytes were detected in rabbits administered 0.8 mg/kg/day, although regeneration of hyaline cartilage was confirmed. Histological evaluation at 12 weeks after transplantation (i.e., 8 weeks after termination of immunosuppression) showed strong immune rejection of human chondrocytes, which indicated that, even after engraftment, articular cartilage is not particularly immune privileged in xenogeneic transplantation. Our results suggest that Japanese white rabbits administered tacrolimus at 1.6 mg/kg/day and evaluated at 4 weeks may be useful as a preclinical model for the direct evaluation of human cell‐based therapies.
Collapse
Affiliation(s)
- Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miki Maehara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daichi Takizawa
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideyuki Maruki
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Ayako Tominaga
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Eri Okada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's University, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
6
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
7
|
Diederichs S, Renz Y, Hagmann S, Lotz B, Seebach E, Richter W. Stimulation of a calcified cartilage connecting zone by GDF-5-augmented fibrin hydrogel in a novel layered ectopic in vivo model. J Biomed Mater Res B Appl Biomater 2017; 106:2214-2224. [PMID: 29068568 DOI: 10.1002/jbm.b.34027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 01/31/2023]
Abstract
Tissue engineering approaches for reconstructing full-depth cartilage defects need to comprise a zone of calcified cartilage to tightly anchor cartilage constructs into the subchondral bone. Here, we investigated whether growth and differentiation factor-5-(GDF-5)-augmented fibrin hydrogel can induce a calcified cartilage-layer in vitro that seamlessly connects cartilage-relevant biomaterials with bone tissue. Human bone marrow stromal cells (BMSCs) were embedded in fibrin hydrogel and subjected to chondrogenesis with TGF-β with or without GDF-5 before constructs were implanted subcutaneously into SCID mice. A novel layered ectopic in vivo model was developed and GDF-5-augmented fibrin with BMSCs was used to glue hydrogel and collagen constructs onto bone disks to investigate formation of a calcified cartilage connecting zone. GDF-5 significantly enhanced ALP activity during in vitro chondrogenesis while ACAN and COL2A1 mRNA, proteoglycan-, collagen-type-II- and collagen-type-X-deposition remained similar to controls. Pellets pretreated with GDF-5 mineralized faster in vivo and formed more ectopic bone. In the novel layered ectopic model, GDF-5 strongly supported calcified cartilage formation that seamlessly connected with the bone. Pro-chondrogenic and pro-hypertrophic activity makes GDF-5-augmented fibrin an attractive bioactive hydrogel with high potential to stimulate a calcified cartilage connecting zone in situ that might promote integration of cartilage scaffolds with bone. Thus, GDF-5-augmented fibrin hydrogel promises to overcome poor fixation of biomaterials in cartilage defects facilitating their long-term regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2214-2224, 2018.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Yvonne Renz
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Sébastien Hagmann
- Clinic for Orthopaedics and Trauma Surgery, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Benedict Lotz
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Elisabeth Seebach
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, 69118, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, 69118, Heidelberg, Germany
| |
Collapse
|
8
|
Koh S, Purser M, Wysk R, Piedrahita JA. Improved Chondrogenic Potential and Proteomic Phenotype of Porcine Chondrocytes Grown in Optimized Culture Conditions. Cell Reprogram 2017; 19:232-244. [PMID: 28749737 DOI: 10.1089/cell.2017.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
For successful cartilage tissue engineering, the ability to generate a high number of chondrocytes in vitro while avoiding terminal differentiation or de-differentiation is critical. The ability to accomplish this by using the abundant and easily sampled costal cartilage could provide a practical alternative to the use of articular cartilage and mesenchymal stem cells. Chondrocytes isolated from pig costal cartilage were expanded in either serum-free medium with FGF2 (SFM) or fetal bovine serum-containing medium (SCM), under either high (21%) or low (5%) oxygen conditions. Overall, chondrocytes cultured in SFM and low oxygen (Low-SFM) demonstrated the highest cell growth rate (p < 0.05). The effect of passage number on the differentiation status of the chondrocytes was analyzed by alkaline phosphatase (AP) staining and real-time PCR for known chondrocyte quality markers. AP staining indicated that chondrocytes grown in SCM had a higher proportion of terminally differentiated (hypertrophic) chondrocytes (p < 0.05). At the mRNA level, expression ratios of ACAN/VCAN and COL2/COL1 were significantly higher (p < 0.05) in cells expanded in Low-SFM, indicating reduced de-differentiation. In vitro re-differentiation capacity was assessed after a 6-week induction, and chondrocytes grown in Low-SFM showed similar expression ratios of COL2/COL1 and ACAN/VCAN to native cartilage. Proteomic analysis of in vitro produced cartilage indicated that the Low-SFM condition most closely matched the proteomic profile of native costal and articular cartilage. In conclusion, Low-SFM culture conditions resulted in improved cell growth rates, reduced levels of de-differentiation during expansion, greater ability to re-differentiate into cartilage on induction, and an improved proteomic profile that resembles that of in vivo cartilage.
Collapse
Affiliation(s)
- Sehwon Koh
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,3 Department of Cell Biology, Duke University , Durham, North Carolina
| | - Molly Purser
- 4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina.,5 RTI Health Solutions, Research Triangle International , Raleigh, North Carolina
| | - Richard Wysk
- 2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,4 Department of Industrial and Systems Engineering, North Carolina state University , Raleigh, North Carolina
| | - Jorge A Piedrahita
- 1 Genomics Program, North Carolina State University , Raleigh, North Carolina.,2 Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina.,6 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
9
|
Marquina M, Collado JA, Pérez-Cruz M, Fernández-Pernas P, Fafián-Labora J, Blanco FJ, Máñez R, Arufe MC, Costa C. Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation. Front Immunol 2017; 8:1465. [PMID: 29163532 PMCID: PMC5681521 DOI: 10.3389/fimmu.2017.01465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 02/05/2023] Open
Abstract
Xenogeneic chondrocytes and allogeneic mesenchymal stem cells (MSC) are considered a potential source of cells for articular cartilage repair. We here assessed the immune response triggered by xenogeneic chondrocytes when injected intraarticularly, as well as the immunoregulatory effect of allogeneic bone marrow-derived MSC after systemic administration. To this end, a discordant xenotransplantation model was established by injecting three million porcine articular chondrocytes (PAC) into the femorotibial joint of Lewis rats and monitoring the immune response. First, the fate of MSC injected using various routes was monitored in an in vivo imaging system. The biodistribution revealed a dependency on the injection route with MSC injected intravenously (i.v.) succumbing early after 24 h and MSC injected intraperitoneally (i.p.) lasting locally for at least 5 days. Importantly, no migration of MSC to the joint was detected in rats previously injected with PAC. MSC were then administered either i.v. 1 week before PAC injection or i.p. 3 weeks after to assess their immunomodulatory function on humoral and adaptive immune parameters. Anti-PAC IgM and IgG responses were detected in all PAC-injected rats with a peak at week 2 postinjection and reactivity remaining above baseline levels by week 18. IgG2a and IgG2b were the predominant and long-lasting IgG subtypes. By contrast, no anti-MSC antibody response was detected in the cohort injected with MSC only, but infusion of MSC before PAC injection temporarily augmented the anti-PAC antibody response. Consistent with a cellular immune response to PAC in PAC-injected rats, cytokine/chemokine profiling in serum by antibody array revealed a distinct pattern relative to controls characterized by elevation of multiple markers at week 2, as well as increases in proliferation in draining lymph nodes. Notably, systemic administration of allogeneic MSC under the described conditions did not diminish the immune response. IL-2 measurements in cocultures of rat peripheral blood lymphocytes with PAC indicated that PAC injection induced some T-cell hyporesponsiveness that was not enhanced in the cohorts additionally receiving MSC. Thus, PAC injected intraarticularly in Lewis rats induced a cellular and humoral immune response that was not counteracted by the systemic administration of allogeneic MSC under the described conditions.
Collapse
Affiliation(s)
- Maribel Marquina
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Javier A. Collado
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Magdiel Pérez-Cruz
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Pablo Fernández-Pernas
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Juan Fafián-Labora
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Rafael Máñez
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
| | - María C. Arufe
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, A Coruña, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d’Investigació Biomèdica de Bellvitge – IDIBELL, Bellvitge University Hospital, ICS, L’Hospitalet de Llobregat, Barcelona, Spain
- *Correspondence: Cristina Costa,
| |
Collapse
|
10
|
Reisig G, Kreinest M, Richter W, Wagner-Ecker M, Dinter D, Attenberger U, Schneider-Wald B, Fickert S, Schwarz ML. Osteoarthritis in the Knee Joints of Göttingen Minipigs after Resection of the Anterior Cruciate Ligament? Missing Correlation of MRI, Gene and Protein Expression with Histological Scoring. PLoS One 2016; 11:e0165897. [PMID: 27820852 PMCID: PMC5098790 DOI: 10.1371/journal.pone.0165897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction The Göttingen Minipig (GM) is used as large animal model in articular cartilage research. The aim of the study was to introduce osteoarthritis (OA) in the GM by resecting the anterior cruciate ligament (ACLR) according to Pond and Nuki, verified by histological and magnetic resonance imaging (MRI) scoring as well as analysis of gene and protein expression. Materials and Methods The eight included skeletally mature female GM were assessed after ACLR in the left and a sham operation in the right knee, which served as control. 26 weeks after surgery the knee joints were scanned using a 3-Tesla high-field MR tomography unit with a 3 T CP Large Flex Coil. Standard proton-density weighted fat saturated sequences in coronal and sagittal direction with a slice thickness of 3 mm were used. The MRI scans were assessed by two radiologists according to a modified WORMS-score, the X-rays of the knee joints by two evaluators. Osteochondral plugs with a diameter of 4mm were taken for histological examination from either the main loading zone or the macroscopic most degenerated parts of the tibia plateau or condyle respectively. The histological sections were blinded and scored by three experts according to Little et al. Gene expression analysis was performed from surrounding cartilage. Expression of adamts4, adamts5, acan, col1A1, col2, il-1ß, mmp1, mmp3, mmp13, vegf was determined by qRT-PCR. Immunohistochemical staining (IH) of Col I and II was performed. IH was scored using a 4 point grading (0—no staining; 3-intense staining). Results and Discussion Similar signs of OA were evident both in ACLR and sham operated knee joints with the histological scoring result of the ACLR joints with 6.48 ± 5.67 points and the sham joints with 6.86 ± 5.84 points (p = 0.7953) The MRI scoring yielded 0.34 ± 0.89 points for the ACLR and 0.03 ± 0.17 for the sham knee joints. There was no correlation between the histological and MRI scores (r = 0.10021). The gene expression profiles as well as the immunohistochemical findings showed no significant differences between ACLR and sham knee joints. In conclusion, both knee joints showed histological signs of OA after 26 weeks irrespective of whether the ACL was resected or not. As MRI results did not match the histological findings, MRI was obviously unsuitable to diagnose the OA in GM. The analysis of the expression patterns of the 10 genes could not shed light on the question, whether sham operation also induced cartilage erosion or if the degeneration was spontaneous. The modified Pond-Nuki model may be used with reservation in the adult minipig to induce an isolated osteoarthritis.
Collapse
Affiliation(s)
- Gregor Reisig
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kreinest
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Mechthild Wagner-Ecker
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Dietmar Dinter
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Ulrike Attenberger
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Barbara Schneider-Wald
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fickert
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus L. Schwarz
- Department for experimental Orthopaedics and Trauma Surgery, Orthopaedic and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, Dai L, Zhang J, Fu X, Duan X, Zhou C, Ao Y. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 2016; 108:157-67. [DOI: 10.1016/j.biomaterials.2016.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
|
13
|
Pereira RC, Martinelli D, Cancedda R, Gentili C, Poggi A. Human Articular Chondrocytes Regulate Immune Response by Affecting Directly T Cell Proliferation and Indirectly Inhibiting Monocyte Differentiation to Professional Antigen-Presenting Cells. Front Immunol 2016; 7:415. [PMID: 27822208 PMCID: PMC5075572 DOI: 10.3389/fimmu.2016.00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Autologous chondrocyte implantation is the current gold standard cell therapy for cartilage lesions. However, in some instances, the heavily compromised health of the patient can either impair or limit the recovery of the autologous chondrocytes and a satisfactory outcome of the implant. Allogeneic human articular chondrocytes (hAC) could be a good alternative, but the possible immunological incompatibility between recipient and hAC donor should be considered. Herein, we report that allogeneic hAC inhibited T lymphocyte response to antigen-dependent and -independent proliferative stimuli. This effect was maximal when T cells and hAC were in contact and it was not relieved by the addition of exogenous lymphocyte growth factor interleukin (IL)-2. More important, hAC impaired the differentiation of peripheral blood monocytes induced with granulocyte monocyte colony-stimulating factor and IL-4 (Mo) to professional antigen-presenting cells, such as dendritic cells (DC). Indeed, a marked inhibition of the onset of the CD1a expression and an ineffective downregulation of CD14 antigens was observed in Mo–hAC co-cultures. Furthermore, compared to immature or mature DC, Mo from Mo–hAC co-cultures did not trigger an efficacious allo-response. The prostaglandin (PG) E2 present in the Mo–hAC co-culture conditioned media is a putative candidate of the hAC-mediated inhibition of Mo maturation. Altogether, these findings indicate that allogeneic hAC inhibit, rather than trigger, immune response and strongly suggest that an efficient chondrocyte implantation could be possible also in an allogeneic setting.
Collapse
Affiliation(s)
- Rui C Pereira
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Daniela Martinelli
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Ranieri Cancedda
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Chiara Gentili
- Regenerative Medicine Unit, Department of Experimental Medicine, University of Genova , Genova , Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Department of Integrated Oncological Therapies, IRCCS AOU San Martino IST , Genova , Italy
| |
Collapse
|
14
|
Abstract
The intrinsic regenerative capacity of avascular cartilage is limited. Cartilage injuries result in chronic, non-healing lesions requiring surgical management. Frequently, these surgical techniques make use of allogeneic cells and tissues. This review discusses the immune status of these materials. Cartilage allografts, often used in orthopedic and plastic surgeries, have rarely provoked a significant immune response. In whole cartilage transplants, the dense matrix produced by chondrocytes inhibits lymphocyte migration, preventing immune detection rendering them "antigen sequestered." It is unclear whether isolated chondrocytes are immune-privileged; chondrocytes express immune inhibitory B7 molecules, indicating that they have some ability to modulate immune reactions. Allogeneic cartilage grafts often involve a bony portion often retaining immunogenic cells and proteins-to facilitate good surgical attachment and concern that this may enhance inflammation and immune rejection. However, studies of failed cartilage grafts have not found immune responses to be a contributing factor. Meniscus allografts, which also retain a bony portion, raise similar concerns as cartilage allografts. Despite this, the plugs improved patient outcomes, indicating that the immunological effects were not clinically significant. Finally, allogeneic mesenchymal stromal cells (MSCs) also are being investigated as a treatment for cartilage damage. MSCs have been demonstrated to have unique immunomodulatory properties including their ability to reduce immune cell infiltration and to modulate inflammation. In summary, the immunogenic properties of cartilage vary with the type of allograft used: Cartilage allografts demonstrate active immune-suppressive mechanisms as evidenced by lack of allograft rejection, while MSC allografts appear to be safe for transplantation.
Collapse
Affiliation(s)
- Benjamin Smith
- Orthopedic Research Laboratory, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ian R Sigal
- Orthopedic Research Laboratory, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Daniel A Grande
- Orthopedic Research Laboratory, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Orthopaedic Surgery, North Shore/LIJ Health System, Manhasset, NY, 11030, USA.
| |
Collapse
|
15
|
Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage. Int J Mol Sci 2015; 16:26813-31. [PMID: 26569221 PMCID: PMC4661848 DOI: 10.3390/ijms161125989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.
Collapse
|