1
|
Zhang Y, Li X, Yu Q, Lv X, Li C, Wang L, Liu Y, Wang Q, Yang Z, Fu X, Xiao R. Using network pharmacology to discover potential drugs for hypertrophic scars. Br J Dermatol 2024; 191:592-604. [PMID: 38820210 DOI: 10.1093/bjd/ljae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypertrophic scarring is a disease of abnormal skin fibrosis caused by excessive fibroblast proliferation. Existing drugs have not achieved satisfactory therapeutic effects. OBJECTIVES To explore the molecular pathogenesis of hypertrophic scars and screen effective drugs for their treatment. METHODS Existing human hypertrophic scar RNA sequencing data were utilized to search for hypertrophic scar-related gene modules and key genes through weighted gene co-expression network analysis (WGCNA). Candidate compounds were screened in a compound library. Potential drugs were screened by molecular docking and verified in human hypertrophic scar fibroblasts and a mouse mechanical force hypertrophic scar model. RESULTS WGCNA showed that hypertrophic scar-associated gene modules influence focal adhesion, the transforming growth factor (TGF)-β signalling pathway and other biologic pathways. Integrin β1 (ITGB1) is the hub protein. Among the candidate compounds obtained by computer virtual screening and molecular docking, crizotinib, sorafenib and SU11274 can inhibit the proliferation and migration of human hypertrophic scar fibroblasts and profibrotic gene expression. Crizotinib had the best effect on hypertrophic scar attenuation in mouse models. At the same time, mouse ITGB1 small interfering RNA can also inhibit mouse scar hyperplasia. CONCLUSIONS ITGB1 and TGF-β signalling pathways are important for hypertrophic scar formation. Crizotinib could be a potential treatment drug for hypertrophic scars.
Collapse
Affiliation(s)
- Yi Zhang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiu Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qian Yu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoyan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lianzhao Wang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
2
|
Wang X, Guillem-Marti J, Kumar S, Lee DS, Cabrerizo-Aguado D, Werther R, Alamo KAE, Zhao YT, Nguyen A, Kopyeva I, Huang B, Li J, Hao Y, Li X, Brizuela-Velasco A, Murray A, Gerben S, Roy A, DeForest CA, Springer T, Ruohola-Baker H, Cooper JA, Campbell MG, Manero JM, Ginebra MP, Baker D. De Novo Design of Integrin α5β1 Modulating Proteins for Regenerative Medicine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600123. [PMID: 38979380 PMCID: PMC11230231 DOI: 10.1101/2024.06.21.600123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Integrin α5β1 is crucial for cell attachment and migration in development and tissue regeneration, and α5β1 binding proteins could have considerable utility in regenerative medicine and next-generation therapeutics. We use computational protein design to create de novo α5β1-specific modulating miniprotein binders, called NeoNectins, that bind to and stabilize the open state of α5β1. When immobilized onto titanium surfaces and throughout 3D hydrogels, the NeoNectins outperform native fibronectin and RGD peptide in enhancing cell attachment and spreading, and NeoNectin-grafted titanium implants outperformed fibronectin and RGD-grafted implants in animal models in promoting tissue integration and bone growth. NeoNectins should be broadly applicable for tissue engineering and biomedicine.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
| | - Saurav Kumar
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David S Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Daniel Cabrerizo-Aguado
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Rachel Werther
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Adam Nguyen
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jing Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuxin Hao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aritza Brizuela-Velasco
- DENS-ia Research Group, Faculty of Health Sciences, Miguel de Cervantes European University, Valladolid, Spain
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Anindya Roy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Timothy Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hannele Ruohola-Baker
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Melody G Campbell
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose Maria Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Mechanical Stretch Induced Skin Regeneration: Molecular and Cellular Mechanism in Skin Soft Tissue Expansion. Int J Mol Sci 2022; 23:ijms23179622. [PMID: 36077018 PMCID: PMC9455829 DOI: 10.3390/ijms23179622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Skin soft tissue expansion is one of the most basic and commonly used techniques in plastic surgery to obtain excess skin for a variety of medical uses. However, skin soft tissue expansion is faced with many problems, such as long treatment process, poor skin quality, high retraction rate, and complications. Therefore, a deeper understanding of the mechanisms of skin soft tissue expansion is needed. The key to skin soft tissue expansion lies in the mechanical stretch applied to the skin by an inflatable expander. Mechanical stimulation activates multiple signaling pathways through cellular adhesion molecules and regulates gene expression profiles in cells. Meanwhile, various types of cells contribute to skin expansion, including keratinocytes, dermal fibroblasts, and mesenchymal stem cells, which are also regulated by mechanical stretch. This article reviews the molecular and cellular mechanisms of skin regeneration induced by mechanical stretch during skin soft tissue expansion.
Collapse
|
5
|
Hosseini M, Brown J, Khosrotehrani K, Bayat A, Shafiee A. Skin biomechanics: a potential therapeutic intervention target to reduce scarring. BURNS & TRAUMA 2022; 10:tkac036. [PMID: 36017082 PMCID: PMC9398863 DOI: 10.1093/burnst/tkac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Indexed: 12/19/2022]
Abstract
Pathological scarring imposes a major clinical and social burden worldwide. Human cutaneous wounds are responsive to mechanical forces and convert mechanical cues to biochemical signals that eventually promote scarring. To understand the mechanotransduction pathways in cutaneous scarring and develop new mechanotherapy approaches to achieve optimal scarring, the current study highlights the mechanical behavior of unwounded and scarred skin as well as intra- and extracellular mechanisms behind keloid and hypertrophic scars. Additionally, the therapeutic interventions that promote optimal scar healing by mechanical means at the molecular, cellular or tissue level are extensively reviewed. The current literature highlights the significant role of fibroblasts in wound contraction and scar formation via differentiation into myofibroblasts. Thus, understanding myofibroblasts and their responses to mechanical loading allows the development of new scar therapeutics. A review of the current clinical and preclinical studies suggests that existing treatment strategies only reduce scarring on a small scale after wound closure and result in poor functional and aesthetic outcomes. Therefore, the perspective of mechanotherapies needs to consider the application of both mechanical forces and biochemical cues to achieve optimal scarring. Moreover, early intervention is critical in wound management; thus, mechanoregulation should be conducted during the healing process to avoid scar maturation. Future studies should either consider combining mechanical loading (pressure) therapies with tension offloading approaches for scar management or developing more effective early therapies based on contraction-blocking biomaterials for the prevention of pathological scarring.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering (MMPE), Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, England, UK
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| |
Collapse
|
6
|
Pundel OJ, Blowes LM, Connelly JT. Extracellular Adhesive Cues Physically Define Nucleolar Structure and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105545. [PMID: 35122409 PMCID: PMC8981897 DOI: 10.1002/advs.202105545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Indexed: 05/14/2023]
Abstract
Adhesive cues from the extracellular matrix (ECM) specify the size and shape of the nucleus via mechanical forces transmitted through the cytoskeleton. However, the effects of these biophysical stimuli on internal nuclear architecture and cellular responses remain poorly understood. This study investigates the direct impact of ECM adhesion on nucleolar remodeling in human keratinocytes using micropatterned substrates. Limited adhesion on small micropatterns promotes fusion of nucleoli, alongside a reduction in nuclear volume and condensation of heterochromatin. These changes in nucleolar architecture are mediated by altered chromatin biomechanics and depend on integration of the nucleus with the actin cytoskeleton. Functionally, nucleolar remodeling regulates ribogenesis and protein synthesis in keratinocytes and is associated with specific transcriptional changes in ribogenesis genes. Together, these findings demonstrate that cell shape and nuclear morphology control nucleolar structure and function and implicate the nucleolus as a key mechano-sensing element within the cell.
Collapse
Affiliation(s)
- Oscar J. Pundel
- Centre for Cell Biology and Cutaneous Research4 Newark StreetLondonE1 2ATUK
| | - Liisa M. Blowes
- Centre for Cell Biology and Cutaneous Research4 Newark StreetLondonE1 2ATUK
| | - John T. Connelly
- Centre for Cell Biology and Cutaneous Research4 Newark StreetLondonE1 2ATUK
| |
Collapse
|
7
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
8
|
Tchoukalova YD, Zacharias SRC, Mitchell N, Madsen C, Myers CE, Gadalla D, Skinner J, Kopaczka K, Gramignoli R, Lott DG. Human amniotic epithelial cell transplantation improves scar remodeling in a rabbit model of acute vocal fold injury: a pilot study. Stem Cell Res Ther 2022; 13:31. [PMID: 35073957 PMCID: PMC8787902 DOI: 10.1186/s13287-022-02701-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/24/2021] [Indexed: 01/22/2023] Open
Abstract
Objective To gain insight into the molecular mechanisms underlying the early stages of vocal fold extracellular matrix (ECM) remodeling after a mid-membranous injury resulting from the use of human amniotic epithelial cells (hAEC), as a novel regenerative medicine cell-based therapy. Methods Vocal folds of six female, New Zealand White rabbits were bilaterally injured. Three rabbits had immediate bilateral direct injection of 1 × 106 hAEC in 100 µl of saline solution (hAEC) and three with 100 µl of saline solution (controls, CTR). Rabbits were euthanized 6 weeks after injury. Proteomic analyses (in-gel trypsin protein digestion, LC–MS/MS, protein identification using Proteome Discoverer and the Uniprot Oryctolagus cuniculus (Rabbit) proteome) and histological analyses were performed. Results hAEC treatment significantly increased the expression of ECM proteins, elastin microfibril interface-located protein 1 (EMILIN-1) and myocilin that are primarily involved in elastogenesis of blood vessels and granulation tissue. A reactome pathway analysis showed increased activity of the anchoring fibril formation by collagen I and laminin, providing mechanical stability and activation of cell signaling pathways regulating cell function. hAEC increased the abundance of keratin 1 indicating accelerated induction of the differentiation programming of the basal epithelial cells and, thereby, improved barrier function. Lastly, upregulation of Rab GDP dissociation inhibitor indicates that hAEC activate the vesicle endocytic and exocytic pathways, supporting the exosome-mediated activation of cell–matrix and cell-to-cell interactions. Conclusions This pilot study suggests that injection of hAEC into an injured rabbit vocal fold favorably alters ECM composition creating a microenvironment that accelerates differentiation of regenerated epithelium and promotes stabilization of new blood vessels indicative of accelerated and improved repair. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02701-w.
Collapse
Affiliation(s)
- Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Stephanie R C Zacharias
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA.,Division of Pediatric Otolaryngology, Phoenix Children's Hospital, Phoenix, AZ, USA.,Division of Laryngology, Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA
| | | | - Cathy Madsen
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Cheryl E Myers
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Dina Gadalla
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jessica Skinner
- Langley Forensic Research Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Katarzyna Kopaczka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - David G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA. .,Division of Laryngology, Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| |
Collapse
|
9
|
Driscoll TP, Bidone TC, Ahn SJ, Yu A, Groisman A, Voth GA, Schwartz MA. Integrin-based mechanosensing through conformational deformation. Biophys J 2021; 120:4349-4359. [PMID: 34509509 PMCID: PMC8553792 DOI: 10.1016/j.bpj.2021.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
Conversion of integrins from low to high affinity states, termed activation, is important in biological processes, including immunity, hemostasis, angiogenesis, and embryonic development. Integrin activation is regulated by large-scale conformational transitions from closed, low affinity states to open, high affinity states. Although it has been suggested that substrate stiffness shifts the conformational equilibrium of integrin and governs its unbinding, here, we address the role of integrin conformational activation in cellular mechanosensing. Comparison of wild-type versus activating mutants of integrin αVβ3 show that activating mutants shift cell spreading, focal adhesion kinase activation, traction stress, and force on talin toward high stiffness values at lower stiffness. Although all activated integrin mutants showed equivalent binding affinity for soluble ligands, the β3 S243E mutant showed the strongest shift in mechanical responses. To understand this behavior, we used coarse-grained computational models derived from molecular level information. The models predicted that wild-type integrin αVβ3 displaces under force and that activating mutations shift the required force toward lower values, with S243E showing the strongest effect. Cellular stiffness sensing thus correlates with computed effects of force on integrin conformation. Together, these data identify a role for force-induced integrin conformational deformation in cellular mechanosensing.
Collapse
Affiliation(s)
- Tristan P. Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida,Corresponding author
| | - Tamara C. Bidone
- Department of Biomedical Engineering, Salt Lake City, Utah,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah,Corresponding author
| | - Sang Joon Ahn
- Yale Cardiovascular Research Center, Department of Cardiovascular Medicine, Yale University, New Haven, Connecticut
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Alexander Groisman
- Department of Physics, University of California San Diego, La Jolla, California
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Department of Cardiovascular Medicine, Yale University, New Haven, Connecticut,Department of Cell Biology, New Haven, Connecticut,Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| |
Collapse
|
10
|
Chen H, Luo T, He S, Sa G. Regulatory mechanism of oral mucosal rete peg formation. J Mol Histol 2021; 52:859-868. [PMID: 34463917 DOI: 10.1007/s10735-021-10016-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
Rete pegs are finger-like structures that are formed during the development and wound healing process of the skin and oral mucosa, and they provide better mechanical resistance and nutritional supply between the epithelium and dermis. An increasing number of studies have shown that rete pegs have physiological functions, such as resisting bacterial invasion, body fluid loss, and other harmful changes, which indicate that rete pegs are important structures in natural skin and oral mucosa. Although a great deal of progress has been made in scaffold materials and construction methods for tissue-engineered skin and oral mucosa in recent years, construction of the oral mucosa with functional rete pegs remains a major challenge. In this review, we summarized current research on the progress on formation of rete pegs in human oral mucosa as well as its molecular basis and regulatory mechanism, which might provide new ideas for functional construction of tissue-engineered skin and oral mucosa.
Collapse
Affiliation(s)
- Heng Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Tianhao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Sangang He
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Guoliang Sa
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| |
Collapse
|
11
|
Culturing Keratinocytes on Biomimetic Substrates Facilitates Improved Epidermal Assembly In Vitro. Cells 2021; 10:cells10051177. [PMID: 34066027 PMCID: PMC8151809 DOI: 10.3390/cells10051177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.
Collapse
|
12
|
Ostrowska-Podhorodecka Z, McCulloch CA. Vimentin regulates the assembly and function of matrix adhesions. Wound Repair Regen 2021; 29:602-612. [PMID: 33887795 DOI: 10.1111/wrr.12920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The intermediate filament protein vimentin is a widely used phenotypic marker for identifying cells of the mesenchymal linkage such as fibroblasts and myofibroblasts, but the full repertoire of vimentin's functional attributes has not been fully explored. Here we consider how vimentin, in addition to its contributions to mechanical stabilization of cell structure, also helps to control the assembly of cell adhesions and migration through collagen matrices. While the assembly and function of matrix adhesions are critical for the differentiation of myofibroblasts and many other types of adherent cells, a potential mechanism that explains how vimentin affects the recruitment and abundance of centrally important proteins in cell adhesions has been elusive. Here we review recent data indicating that vimentin plays a central regulatory role in the assembly of focal adhesions which form in response to the attachment to collagen. We show that in particular, vimentin is a key organizer of the β1 integrin adhesive machinery, which affects cell migration through collagen. This review provides a comprehensive picture of the surprisingly broad array of processes and molecules with which vimentin interacts to affect cell function in the context of fibroblast and myofibroblast adhesion and migration on collagen.
Collapse
|
13
|
Vabeiryureilai M, Lalrinzuali K, Jagetia GC. NF-κB and COX-2 repression with topical application of hesperidin and naringin hydrogels augments repair and regeneration of deep dermal wounds. Burns 2021; 48:132-145. [PMID: 33972147 DOI: 10.1016/j.burns.2021.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Wound injury is common and causes serious complications if not treated properly. The moist dressing heals wounds faster than other dressings. Therefore, we sought to study the effect of hesperidin/naringin hydrogel wound dressing or their combinations on the deep dermal wounds in mice. METHODS A rectangular full thickness skin flap of 2.5 × 1.5 cm was excised from depilated mice dorsum and the wound was fully covered with 5% hesperidin/5% naringin hydrogel or both in the ratio of 1:1, 2:1, or 1:2, respectively once daily until complete healing of the wound. Data were collected on wound contraction, mean wound healing time, collagen, DNA, and nitric oxide syntheses, glutathione concentration, superoxide dismutase activity, and lipid peroxidation throughout healing. Expression of NF-κB and COX-2 were also estimated in the regenerating granulation tissue using Western blot. FINDINGS Dressing of wounds with 5% hesperidin hydrogel led to a higher and early wound contraction and significantly reduced mean wound healing time by 5.7 days than 5% naringin or combination of hesperidin and naringin hydrogels in the ratio of 1:1, 2:1, or 1:2. Hesperidin hydrogel wound dressing caused higher collagen and DNA syntheses than other groups at all times after injury. Glutathione concentration and superoxide dismutase activity increased followed by a decline in lipid peroxidation in regenerating wounds after hesperidin/naringin hydrogel application and a maximum effect was observed for hesperidin alone. The hesperidin/naringin hydrogel suppressed NF-κB and COX-2 expression on days 6 and 12. CONCLUSIONS Application of 5% hesperidin hydrogel was more effective than 5% naringin or combination of hesperidin and naringin gels (1:1, 2:1 or 1:2) indicated by a greater wound contraction, reduced mean wound healing time, elevated collagen and DNA syntheses, rise in glutathione concentration, and superoxide dismutase activity followed by reduced lipid peroxidation, and NF-κB, and COX-2 expression.
Collapse
|
14
|
Fu S, Panayi A, Fan J, Mayer HF, Daya M, Khouri RK, Gurtner GC, Ogawa R, Orgill DP. Mechanotransduction in Wound Healing: From the Cellular and Molecular Level to the Clinic. Adv Skin Wound Care 2021; 34:67-74. [PMID: 33443911 DOI: 10.1097/01.asw.0000725220.92976.a7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GENERAL PURPOSE To review the various mechanical forces that affect fibroblasts, keratinocytes, endothelial cells, and adipocytes at the cellular and molecular level as well as scar-reducing mechanical devices currently in clinical use. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will:1. Compare and contrast the responses of various types of cells to mechanical forces.2. Identify the mechanical devices and techniques that can help restore skin integrity.
Collapse
|
15
|
Nie Y, Xu X, Wang W, Ma N, Lendlein A. Spheroid formation of human keratinocyte: Balancing between cell-substrate and cell-cell interaction. Clin Hemorheol Microcirc 2020; 76:329-340. [PMID: 32925021 DOI: 10.3233/ch-209217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The formation of spheroids is tightly regulated by intrinsic cell-cell and cell-substrate interactions. OBJECTIVE The chitosan (CS)-coating was applied to investigate the driven force directed the spheroid formation. METHODS The effects of CS on cell functions were studied. Atomic force microscopy was employed to measure the cell- biomaterial interplay at single cell level. RESULTS HaCaT cells shifted from their flattened sheet to a compact 3D spheroidal morphology when increasing CS-coating concentration. The proliferative capacity of HaCaT was preserved in the spheroid. The expression and activation of integrin β1 (ITGB1) were enhanced on CS modified surfaces, while the active to total ratio of ITGB1 was decreased. The adhesive force of a single HaCaT cell to the tissue culture plate (TCP) was 4.84±0.72 nN. It decreased on CS-coated surfaces as CS concentration increased, from 2.16±0.26 nN to 0.96±0.17 nN. The adhesive force between the single HaCaT cell to its neighbor cell increased as CS concentration increased, from 1.15±0.09 nN to 2.60±0.51 nN. CONCLUSIONS Conclusively, the decreased cell- substrate adhesion was the main driven force in the spheroid formation. This finding might serve as a design criterion for biomaterials facilitating the formation of epithelial spheroids.
Collapse
Affiliation(s)
- Yan Nie
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Goleva E, Calatroni A, LeBeau P, Berdyshev E, Taylor P, Kreimer S, Cole RN, Leung DYM. Skin tape proteomics identifies pathways associated with transepidermal water loss and allergen polysensitization in atopic dermatitis. J Allergy Clin Immunol 2020; 146:1367-1378. [PMID: 32360271 PMCID: PMC7606732 DOI: 10.1016/j.jaci.2020.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) and food allergy (FA) are associated with skin barrier dysfunction. OBJECTIVE Skin biomarkers are needed for skin barrier interventions studies. METHODS In this study, skin tape strip (STS) samples were collected from nonlesional skin of 62 children in AD FA+, AD FA-, and nonatopic groups for mass spectrometry proteomic analysis. transepidermal water loss and allergic sensitization were assessed. STS proteomic analysis results were validated in an independent cohort of 41 adults with AD with and without FA versus nonatopic controls. RESULTS A group of 45 proteins was identified as a principal component 1 (PC1) with the highest expression in AD FA+ STSs. This novel set of STS proteins was highly correlative to skin transepidermal water loss and allergic sensitization. PC1 proteins included keratin intermediate filaments; proteins associated with inflammatory responses (S100 proteins, alarmins, protease inhibitors); and glycolysis and antioxidant defense enzymes. Analysis of PC1 proteins expression in an independent adult AD cohort validated differential expression of STS PC1 proteins in the skin of adult patients with AD with the history of clinical reactions to peanut. CONCLUSIONS STS analysis of nonlesional skin of AD children identified a cluster of proteins with the highest expression in AD FA+ children. The differential expression of STS PC1 proteins was confirmed in a replicate cohort of adult AD patients with FA to peanut, suggesting a unique STS proteomic endotype for AD FA+ that persists into adulthood. Collectively, PC1 proteins are associated with abnormalities in skin barrier integrity and may increase the risk of epicutaneous sensitization to food allergens.
Collapse
Affiliation(s)
- Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | | | | | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | | | | |
Collapse
|
17
|
Devereaux J, Dargahi N, Fraser S, Nurgali K, Kiatos D, Apostolopoulos V. Leucocyte-Rich Platelet-Rich Plasma Enhances Fibroblast and Extracellular Matrix Activity: Implications in Wound Healing. Int J Mol Sci 2020; 21:ijms21186519. [PMID: 32900003 PMCID: PMC7556022 DOI: 10.3390/ijms21186519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Platelet-rich plasma (PRP) is an autologous blood product that contains a high concentration of platelets and leucocytes, which are fundamental fibroblast proliferation agents. Literature has emerged that offers contradictory findings about leucocytes within PRP. Herein, we elucidated the effects of highly concentrated leucocytes and platelets on human fibroblasts. Methods: Leucocyte-rich, PRP (LR-PRP) and leucocyte-poor, platelet-poor plasma (LP-PPP) were compared to identify their effects on human fibroblasts, including cell proliferation, wound healing and extracellular matrix and adhesion molecule gene expressions. Results: The LR-PRP exhibited 1422.00 ± 317.21 × 103 platelets/µL and 16.36 ± 2.08 × 103 white blood cells/µL whilst the LP-PPP demonstrated lower concentrations of 55.33 ± 10.13 × 103 platelets/µL and 0.8 ± 0.02 × 103 white blood cells/µL. LR-PRP enhanced fibroblast cell proliferation and cell migration, and demonstrated either upregulation or down-regulation gene expression profile of the extracellular matrix and adhesion molecules. Conclusion: LR-PRP has a continuous stimulatory anabolic and ergogenic effect on human fibroblast cells.
Collapse
Affiliation(s)
- Jeannie Devereaux
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
- Correspondence: (J.D.); (V.A.); Tel.: +613-83958218 (J.D.); +613-99192025 (V.A.)
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
| | - Dimitrios Kiatos
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 3011, Australia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia; (N.D.); (S.F.); (K.N.)
- Correspondence: (J.D.); (V.A.); Tel.: +613-83958218 (J.D.); +613-99192025 (V.A.)
| |
Collapse
|
18
|
Tolg C, Liu M, Cousteils K, Telmer P, Alam K, Ma J, Mendina L, McCarthy JB, Morris VL, Turley EA. Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization. J Biol Chem 2020; 295:5427-5448. [PMID: 32165498 PMCID: PMC7170511 DOI: 10.1074/jbc.ra119.010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
Prevention of aberrant cutaneous wound repair and appropriate regeneration of an intact and functional integument require the coordinated timing of fibroblast and keratinocyte migration. Here, we identified a mechanism whereby opposing cell-specific motogenic functions of a multifunctional intracellular and extracellular protein, the receptor for hyaluronan-mediated motility (RHAMM), coordinates fibroblast and keratinocyte migration speed and ensures appropriate timing of excisional wound closure. We found that, unlike in WT mice, in Rhamm-null mice, keratinocyte migration initiates prematurely in the excisional wounds, resulting in wounds that have re-surfaced before the formation of normal granulation tissue, leading to a defective epidermal architecture. We also noted aberrant keratinocyte and fibroblast migration in the Rhamm-null mice, indicating that RHAMM suppresses keratinocyte motility but increases fibroblast motility. This cell context-dependent effect resulted from cell-specific regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation and expression of a RHAMM target gene encoding matrix metalloprotease 9 (MMP-9). In fibroblasts, RHAMM promoted ERK1/2 activation and MMP-9 expression, whereas in keratinocytes, RHAMM suppressed these activities. In keratinocytes, loss of RHAMM function or expression promoted epidermal growth factor receptor-regulated MMP-9 expression via ERK1/2, which resulted in cleavage of the ectodomain of the RHAMM partner protein CD44 and thereby increased keratinocyte motility. These results identify RHAMM as a key factor that integrates the timing of wound repair by controlling cell migration.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Muhan Liu
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Katelyn Cousteils
- Department of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Patrick Telmer
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Khandakar Alam
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Jenny Ma
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - Leslie Mendina
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Vincent L Morris
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 3K7, Canada
| | - Eva A Turley
- London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital, London, Ontario N6A 4L6, Canada; Departments of Oncology, Biochemistry, and Surgery, Schulich School of Medicine, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
19
|
Maturo MG, Soligo M, Gibson G, Manni L, Nardini C. The greater inflammatory pathway-high clinical potential by innovative predictive, preventive, and personalized medical approach. EPMA J 2020; 11:1-16. [PMID: 32140182 PMCID: PMC7028895 DOI: 10.1007/s13167-019-00195-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND LIMITATIONS Impaired wound healing (WH) and chronic inflammation are hallmarks of non-communicable diseases (NCDs). However, despite WH being a recognized player in NCDs, mainstream therapies focus on (un)targeted damping of the inflammatory response, leaving WH largely unaddressed, owing to three main factors. The first is the complexity of the pathway that links inflammation and wound healing; the second is the dual nature, local and systemic, of WH; and the third is the limited acknowledgement of genetic and contingent causes that disrupt physiologic progression of WH. PROPOSED APPROACH Here, in the frame of Predictive, Preventive, and Personalized Medicine (PPPM), we integrate and revisit current literature to offer a novel systemic view on the cues that can impact on the fate (acute or chronic inflammation) of WH, beyond the compartmentalization of medical disciplines and with the support of advanced computational biology. CONCLUSIONS This shall open to a broader understanding of the causes for WH going awry, offering new operational criteria for patients' stratification (prediction and personalization). While this may also offer improved options for targeted prevention, we will envisage new therapeutic strategies to reboot and/or boost WH, to enable its progression across its physiological phases, the first of which is a transient acute inflammatory response versus the chronic low-grade inflammation characteristic of NCDs.
Collapse
Affiliation(s)
- Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Tech, Atlanta, GA USA
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Christine Nardini
- IAC Institute for Applied Computing, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
- Bio Unit, Scientific and Medical Direction, SOL Group, Monza, Italy
| |
Collapse
|
20
|
Letsiou S, Félix RC, Cardoso JCR, Anjos L, Mestre AL, Gomes HL, Power DM. Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts. Biochimie 2020; 171-172:72-78. [PMID: 32084494 DOI: 10.1016/j.biochi.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
Abstract
Cartilage acidic protein 1 (CRTAC1) is an extracellular matrix protein of human chondrogenic tissue that is also present in other vertebrates, non-vertebrate eukaryotes and in some prokaryotes. The function of CRTAC1 remains unknown but the protein's structure indicates a role in cell-cell or cell-matrix interactions and calcium-binding. The aim of the present study was to evaluate the in vitro effects of hCRTAC1-A on normal human dermal fibroblasts (NHDF). A battery of in vitro assays (biochemical and PCR), immunofluorescence and a biosensor approach were used to characterize the protein's biological activities on NHDF cells in a scratch assay. Gene expression analysis revealed that hCRTAC1-A protein is associated with altered levels of expression for genes involved in the processes of cell proliferation (CXCL12 and NOS2), cell migration (AQP3 and TNC), and extracellular matrix-ECM regeneration and remodeling (FMOD, TIMP1, FN1) indicating a role for hCRTAC1-A in promoting these activities in a scratch assay. In parallel, the candidate processes identified by differential gene transcription were substantiated and extended using Electric cell-substrate impedance sensing (ECIS) technology, immunofluorescence and cell viability assays. Our findings indicate that hCRTAC1-A stimulated cell proliferation, migration and ECM production in primary human fibroblasts in vitro.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Scientific Affairs, APIVITA SA, Industrial Park of Markopoulo Mesogaias, 19003, Markopoulo Attikis, Athens, Greece.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana L Mestre
- Universidade Do Algarve, Faculdade de Ciências e Tecnologia, 8005-139, Faro, Portugal; Instituto de Telecomunicações, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Henrique L Gomes
- Universidade Do Algarve, Faculdade de Ciências e Tecnologia, 8005-139, Faro, Portugal; Instituto de Telecomunicações, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Universidade Do Algarve, Faculdade de Ciências e Tecnologia, 8005-139, Faro, Portugal.
| |
Collapse
|
21
|
Flemming S, Luissint AC, Kusters DHM, Raya-Sandino A, Fan S, Zhou DW, Hasegawa M, Garcia-Hernandez V, García AJ, Parkos CA, Nusrat A. Desmocollin-2 promotes intestinal mucosal repair by controlling integrin-dependent cell adhesion and migration. Mol Biol Cell 2020; 31:407-418. [PMID: 31967937 PMCID: PMC7185897 DOI: 10.1091/mbc.e19-12-0692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The intestinal mucosa is lined by a single layer of epithelial cells that forms a tight barrier, separating luminal antigens and microbes from underlying tissue compartments. Mucosal damage results in a compromised epithelial barrier that can lead to excessive immune responses as observed in inflammatory bowel disease. Efficient wound repair is critical to reestablish the mucosal barrier and homeostasis. Intestinal epithelial cells (IEC) exclusively express the desmosomal cadherins, Desmoglein-2 and Desmocollin-2 (Dsc2) that contribute to mucosal homeostasis by strengthening intercellular adhesion between cells. Despite this important property, specific contributions of desmosomal cadherins to intestinal mucosal repair after injury remain poorly investigated in vivo. Here we show that mice with inducible conditional knockdown (KD) of Dsc2 in IEC (Villin-CreERT2; Dsc2 fl/fl) exhibited impaired mucosal repair after biopsy-induced colonic wounding and recovery from dextran sulfate sodium-induced colitis. In vitro analyses using human intestinal cell lines after KD of Dsc2 revealed delayed epithelial cell migration and repair after scratch-wound healing assay that was associated with reduced cell–matrix traction forces, decreased levels of integrin β1 and β4, and altered activity of the small GTPase Rap1. Taken together, these results demonstrate that epithelial Dsc2 is a key contributor to intestinal mucosal wound healing in vivo.
Collapse
Affiliation(s)
- Sven Flemming
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | - Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Dennis W Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Mizuho Hasegawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Substrate softness promotes terminal differentiation of human keratinocytes without altering their ability to proliferate back into a rigid environment. Arch Dermatol Res 2019; 311:741-751. [DOI: 10.1007/s00403-019-01962-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/13/2019] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
|
23
|
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:344-365. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.
Collapse
|
24
|
de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures-Toward 3D Inner Ear Biotechnology. Anat Rec (Hoboken) 2019; 303:408-426. [PMID: 30635991 PMCID: PMC7065153 DOI: 10.1002/ar.24067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been an increased interest in stem cells for the purpose of regenerative medicine to deliver a wide range of therapies to treat many diseases. However, two‐dimensional cultures of stem cells are of limited use when studying the mechanism of pathogenesis of diseases and the feasibility of a treatment. Therefore, research is focusing on the strengths of stem cells in the three‐dimensional (3D) structures mimicking organs, that is, organoids, or organ‐on‐chip, for modeling human biology and disease. As 3D technology advances, it is necessary to know which signals stem cells need to multiply and differentiate into complex structures. This holds especially true for the complex 3D structure of the inner ear. Recent work suggests that although other factors play a role, the extracellular matrix (ECM), including its topography, is crucial to mimic a stem cell niche in vitro and to drive stem cells toward the formation of the tissue of interest. Technological developments have led to the investigation of biomaterials that closely resemble the native ECM. In the fast forward moving research of organoids and organs‐on‐chip, the inner ear has hardly received attention. This review aims to provide an overview, by describing the general context in which cells, matrix and morphogens cooperate in order to build a tissue, to facilitate research in 3D inner ear technology. Anat Rec, 303:408–426, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
| | - Karen Sliedregt
- Wageningen University and Research, Wageningen, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Margriet A Huisman
- Hair Science Institute, Maastricht, Maastricht, the Netherlands.,Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
Lalrinzuali K, Vabeiryureilai M, Jagetia GC. Topical application of stem bark ethanol extract of Sonapatha, Oroxylum indicum (L.) Kurz accelerates healing of deep dermal excision wound in Swiss albino mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:290-299. [PMID: 30121235 DOI: 10.1016/j.jep.2018.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Oroxylum indicum is used traditionally to treat fever, colic, stomach ulcers, constipation, indigestion, intestinal worms, strangury, asthma, cough, hiccough, diarrhea, dysentery and wounds by the herbal healers of Mizoram and it is also part of Ayurvedic formulations. AIMS OF THE STUDY The wound healing activity of Oroxylum indicum has not been investigated. Therefore, the present study was undertaken to evaluate the ability of different concentrations of ethanol extract of stem bark of Oroxylum indicum in the deep dermal excision wounds of mice. MATERIALS AND METHODS The deep dermal excision wound was created on the shaved dorsum of Swiss albino mice. Each excision wound was topically applied with 5%, 10%, 20% or 30% gel of stem bark ethanol extract of Oroxylum indicum (OIE) and wound contraction, mean wound healing time (MHT), collagen and DNA syntheses were studied. The expression of NF-κB and COX-II were evaluated in the regenerating wound granulation tissues of mice. RESULTS Topical application of different concentrations of OIE resulted in a concentration dependent rise in wound contraction and MHT and the highest wound contraction was recorded for 10% OIE. Similarly, topical application of different concentrations of OIE increased the DNA and neocollagen syntheses in a dose dependent manner at all post wounding days and the greatest acceleration in DNA and neocollagen formation was observed for 10% OIE. The evaluation of lipid peroxidation (LOO) showed a dose dependent decline in LOO, which was lowest for 10% OIE. The study of molecular mechanisms revealed the suppression of NF-κB and COX-II in a dose dependent manner in the regenerating wound of mice with a maximum inhibition at 10% OIE. CONCLUSIONS The present study demonstrates that OIE accelerated the wound contraction and reduced mean wound healing time in mice, which may be due to increased collagen and DNA syntheses, reduced lipid peroxidation coupled by NF-κB and COX-II suppression by OIE in the regenerating wounds of mice.
Collapse
Affiliation(s)
- K Lalrinzuali
- Department of Zoology, Mizoram University, Tanhril, Aizawl 796004, Mizoram, India
| | - M Vabeiryureilai
- Department of Zoology, Mizoram University, Tanhril, Aizawl 796004, Mizoram, India
| | | |
Collapse
|
26
|
Indra I, Gasparski AN, Beningo KA. An in vitro correlation of metastatic capacity and dual mechanostimulation. PLoS One 2018; 13:e0207490. [PMID: 30427911 PMCID: PMC6241134 DOI: 10.1371/journal.pone.0207490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Cells are under the influence of multiple forms of mechanical stimulation in vivo. For example, a cell is subjected to mechanical forces from tissue stiffness, shear and tensile stress and transient applied strain. Significant progress has been made in understanding the cellular mechanotransduction mechanisms in response to a single mechanical parameter. However, our knowledge of how a cell responds to multiple mechanical inputs is currently limited. In this study, we have tested the cellular response to the simultaneous application of two mechanical inputs: substrate compliance and transient tugging. Our results suggest that cells within a multicellular spheroid will restrict their response to a single mechanical input at a time and when provided with two mechanical inputs simultaneously, one will dominate. In normal and non-metastatic mammary epithelial cells, we found that they respond to applied stimulation and will override substrate compliance cues in favor of the applied mechanical stimulus. Surprisingly, however, metastatic mammary epithelial cells remain non-responsive to both mechanical cues. Our results suggest that, within our assay system, metastatic progression may involve the down-regulation of multiple mechanotransduction pathways.
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Alexander N. Gasparski
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
27
|
Park SH, Lee CW, Lee JH, Park JY, Roshandell M, Brennan CA, Choe KM. Requirement for and polarized localization of integrin proteins during Drosophila wound closure. Mol Biol Cell 2018; 29:2137-2147. [PMID: 29995573 PMCID: PMC6249799 DOI: 10.1091/mbc.e17-11-0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/19/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-βPS and αPS3-βPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.
Collapse
Affiliation(s)
- Si-Hyoung Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan-wool Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Ji-Hyun Lee
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Young Park
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| | - Mobina Roshandell
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Catherine A. Brennan
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
28
|
Oh JY, Suh HN, Choi GE, Lee HJ, Jung YH, Ko SH, Kim JS, Chae CW, Lee CK, Han HJ. Modulation of sonic hedgehog-induced mouse embryonic stem cell behaviours through E-cadherin expression and integrin β1-dependent F-actin formation. Br J Pharmacol 2018; 175:3548-3562. [PMID: 29933500 DOI: 10.1111/bph.14423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behaviour in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly elucidated. Thus, we investigated the effect of Shh on the regulation of mESC behaviour as well as the effect of Shh-pretreated mESCs in skin wound healing. EXPERIMENTAL APPROACH The underlying mechanisms of Shh signalling pathway in growth and motility of mESCs were investigated using Western blot analysis, a cell proliferation assay and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using a mouse excisional wound splinting model. KEY RESULTS Shh disrupted the adherens junction through proteolysis by activating MMPs. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 up-regulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, the skin wound healing assay revealed that Shh-treated mESCs increased angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. CONCLUSIONS AND IMPLICATIONS Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation by a mechanism involving FAK/Src and Rac1/Cdc42 signalling pathways in mESCs.
Collapse
Affiliation(s)
- Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea.,Minipig Model Group, Animal Model Center, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeong Chang, Kangwon do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Zarkoob H, Chinnathambi S, Selby JC, Sander EA. Substrate deformations induce directed keratinocyte migration. J R Soc Interface 2018; 15:20180133. [PMID: 29899159 PMCID: PMC6030620 DOI: 10.1098/rsif.2018.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Cell migration is an essential part of many (patho)physiological processes, including keratinocyte re-epithelialization of healing wounds. Physical forces and mechanical cues from the wound bed (in addition to biochemical signals) may also play an important role in the healing process. Previously, we explored this possibility and found that polyacrylamide (PA) gel stiffness affected human keratinocyte behaviour and that mechanical deformations in soft (approx. 1.2 kPa) PA gels produced by neighbouring cells appeared to influence the process of de novo epithelial sheet formation. To clearly demonstrate that keratinocytes do respond to such deformations, we conducted a series of experiments where we observed the response of single keratinocytes to a prescribed local substrate deformation that mimicked a neighbouring cell or evolving multicellular aggregate via a servo-controlled microneedle. We also examined the effect of adding either Y27632 or blebbistatin on cell response. Our results indicate that keratinocytes do sense and respond to mechanical signals comparable to those that originate from substrate deformations imposed by neighbouring cells, a finding that could have important implications for the process of keratinocyte re-epithelialization that takes place during wound healing. Furthermore, the Rho/ROCK pathway and the engagement of NM II are both essential to substrate deformation-directed keratinocyte migration.
Collapse
Affiliation(s)
- Hoda Zarkoob
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - Sathivel Chinnathambi
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - John C Selby
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edward A Sander
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
30
|
Moore AL, Marshall CD, Barnes LA, Murphy MP, Ransom RC, Longaker MT. Scarless wound healing: Transitioning from fetal research to regenerative healing. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.309. [PMID: 29316315 PMCID: PMC6485243 DOI: 10.1002/wdev.309] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023]
Abstract
Since the discovery of scarless fetal skin wound healing, research in the field has expanded significantly with the hopes of advancing the finding to adult human patients. There are several differences between fetal and adult skin that have been exploited to facilitate scarless healing in adults including growth factors, cytokines, and extracellular matrix substitutes. However, no one therapy, pathway, or cell subtype is sufficient to support scarless wound healing in adult skin. More recently, products that contain or mimic fetal and adult uninjured dermis were introduced to the wound healing market with promising clinical outcomes. Through our review of the major experimental targets of fetal wound healing, we hope to encourage research in areas that may have a significant clinical impact. Additionally, we will investigate therapies currently in clinical use and evaluate whether they represent a legitimate advance in regenerative medicine or a vulnerary agent. WIREs Dev Biol 2018, 7:e309. doi: 10.1002/wdev.309 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Plant Development > Cell Growth and Differentiation Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells.
Collapse
Affiliation(s)
- Alessandra L. Moore
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clement D. Marshall
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Leandra A. Barnes
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Matthew P. Murphy
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Michael T. Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
31
|
Barnes LA, Marshall CD, Leavitt T, Hu MS, Moore AL, Gonzalez JG, Longaker MT, Gurtner GC. Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. Adv Wound Care (New Rochelle) 2018; 7:47-56. [PMID: 29392093 PMCID: PMC5792236 DOI: 10.1089/wound.2016.0709] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/15/2016] [Indexed: 12/25/2022] Open
Abstract
Significance: Excessive scarring is major clinical and financial burden in the United States. Improved therapies are necessary to reduce scarring, especially in patients affected by hypertrophic and keloid scars. Recent Advances: Advances in our understanding of mechanical forces in the wound environment enable us to target mechanical forces to minimize scar formation. Fetal wounds experience much lower resting stress when compared with adult wounds, and they heal without scars. Therapies that modulate mechanical forces in the wound environment are able to reduce scar size. Critical Issues: Increased mechanical stresses in the wound environment induce hypertrophic scarring via activation of mechanotransduction pathways. Mechanical stimulation modulates integrin, Wingless-type, protein kinase B, and focal adhesion kinase, resulting in cell proliferation and, ultimately, fibrosis. Therefore, the development of therapies that reduce mechanical forces in the wound environment would decrease the risk of developing excessive scars. Future Directions: The development of novel mechanotherapies is necessary to minimize scar formation and advance adult wound healing toward the scarless ideal. Mechanotransduction pathways are potential targets to reduce excessive scar formation, and thus, continued studies on therapies that utilize mechanical offloading and mechanomodulation are needed.
Collapse
Affiliation(s)
- Leandra A. Barnes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clement D. Marshall
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Tripp Leavitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael S. Hu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Department of Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | | | - Jennifer G. Gonzalez
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
32
|
Galletti R, Verger S, Hamant O, Ingram GC. Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 2017; 143:3249-58. [PMID: 27624830 DOI: 10.1242/dev.132837] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant aerial epidermal tissues, like animal epithelia, act as load-bearing layers and hence play pivotal roles in development. The presence of tension in the epidermis has morphogenetic implications for organ shapes but it also constantly threatens the integrity of this tissue. Here, we explore the multi-scale relationship between tension and cell adhesion in the plant epidermis, and we examine how tensile stress perception may act as a regulatory input to preserve epidermal tissue integrity and thus normal morphogenesis. From this, we identify parallels between plant epidermal and animal epithelial tissues and highlight a list of unexplored questions for future research.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| |
Collapse
|
33
|
Shen C, Sun L, Zhu N, Qi F. Kindlin-1 contributes to EGF-induced re-epithelialization in skin wound healing. Int J Mol Med 2017; 39:949-959. [PMID: 28290610 PMCID: PMC5360437 DOI: 10.3892/ijmm.2017.2911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 02/21/2017] [Indexed: 02/04/2023] Open
Abstract
The commercial use of epidermal growth factor (EGF) is extensive and has been shown to be effective for skin wound healing in clinical practice. There is evidence to indicate that the topical administration of EGF significantly accelerates re-epithelialization by promoting keratinocyte mitogenesis and migration following acute injury; however, the mechanisms involved remain to be elucidated. Thus, in this study, we focused on Kindlin-1, a four-point-one, ezrin, radixin, moesin (FERM)-domain-containing adaptor protein, and report its contribution to EGF-induced re-epithelialization in skin wound healing. In tissue samples, the expression of Kindlin-1 was induced upon EGF treatment compared to that in the natural healing group. In immortalized human keratinocytes (HaCaT cells), we further proved that Kindlin-1 was necessary for mediating EGF-induced activation signals, including integrin β1 activation, focal adhesion kinase (FAK) phosphorylation and actin re-organization, which finally led to enhanced cell proliferation and migration. These results indicate that Kindlin-1 is essential in EGF-induced re-epithelialization in skin wound healing and provide additional rationale for the clinical application of EGF in the treatment of acute wounds.
Collapse
Affiliation(s)
- Congcong Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Linlin Sun
- Department of Biochemistry and Molecular Biology, Basic Medical College of Fudan University, Shanghai 200032, P.R. China
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
34
|
Hosur V, Burzenski LM, Stearns TM, Farley ML, Sundberg JP, Wiles MV, Shultz LD. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing. Exp Mol Pathol 2017; 102:337-346. [PMID: 28268192 DOI: 10.1016/j.yexmp.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022]
Abstract
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, ME 04609, United States.
| | | | | | | | | | | | | |
Collapse
|
35
|
Poly(Lactic Acid) Nanoparticles Targeting α5β1 Integrin as Vaccine Delivery Vehicle, a Prospective Study. PLoS One 2016; 11:e0167663. [PMID: 27973577 PMCID: PMC5156357 DOI: 10.1371/journal.pone.0167663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022] Open
Abstract
Biodegradable polymeric nanoparticles are vehicles of choice for drug delivery and have the ability to encapsulate and present at their surface different molecules of interest. Among these bio-nanocarriers, poly(lactic acid) (PLA) nanoparticles have been used as adjuvant and vehicle for enhanced vaccine efficacy. In order to develop an approach to efficient vaccine delivery, we developed nanoparticles to target α5β1 positive cells. We first overproduced, in bacteria, human fibronectin FNIII9/10 recombinant proteins possessing an integrin α5β1 binding site, the RGDS sequence, or a mutated form of this site. After having confirmed the integrin binding properties of these recombinant proteins in cell culture assays, we were able to formulate PLA nanoparticles with these FNIII9/10 proteins at their surface. We then confirmed, by fluorescence and confocal microscopy, an enhanced cellular uptake by α5β1+ cells of RGDS-FNIII9/10 coated PLA nanoparticles, in comparison to KGES-FNIII9/10 coated or non-coated controls. As a first vaccination approach, we prepared PLA nanoparticles co-coated with p24 (an HIV antigen), and RGDS- or KGES-FNIII9/10 proteins, followed by subcutaneous vaccine administration, in mice. Although we did not detect improvements in the apparent humoral response to p24 antigen in the serum of RGDS/p24 nanoparticle-treated mice, the presence of the FNIII proteins increased significantly the avidity index of anti-p24 antibodies compared to p24-nanoparticle-injected control mice. Future developments of this innovative targeted vaccine are discussed.
Collapse
|
36
|
Yang QQ, Yang SS, Tan JL, Luo GX, He WF, Wu J. Process of Hypertrophic Scar Formation: Expression of Eukaryotic Initiation Factor 6. Chin Med J (Engl) 2016; 128:2787-91. [PMID: 26481747 PMCID: PMC4736889 DOI: 10.4103/0366-6999.167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Hypertrophic scar is one of the most common complications and often causes the disfigurement or deformity in burn or trauma patients. Therapeutic methods on hypertrophic scar treatment have limitations due to the poor understanding of mechanisms of hypertrophic scar formation. To throw light on the molecular mechanism of hypertrophic scar formation will definitely improve the outcome of the treatment. This study aimed to illustrate the negative role of eukaryotic initiation factor 6 (eIF6) in the process of human hypertrophic scar formation, and provide a possible indicator of hypertrophic scar treatment and a potential target molecule for hypertrophic scar. Methods: In the present study, we investigated the protein expression of eIF6 in the human hypertrophic scar of different periods by immunohistochemistry and Western blot analysis. Results: In the hypertrophic scar tissue, eIF6 expression was significantly decreased and absent in the basal layer of epidermis in the early period, and increased slowly and began to appear in the basal layer of epidermis by the scar formation time. Conclusions: This study confirmed that eIF6 expression was significantly related to the development of hypertrophic scar, and the eIF6 may be a target molecule for hypertrophic scar control or could be an indicator of the outcomes for other treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038; Chongqing Key Laboratory for Disease Proteomics, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
37
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
38
|
Mechanoregulation of Wound Healing and Skin Homeostasis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3943481. [PMID: 27413744 PMCID: PMC4931093 DOI: 10.1155/2016/3943481] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.
Collapse
|
39
|
Zheng M, Yang Y, Liu XQ, Liu MY, Zhang XF, Wang X, Li HP, Tan JG. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia. PLoS One 2015; 10:e0140278. [PMID: 26461253 PMCID: PMC4603669 DOI: 10.1371/journal.pone.0140278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023] Open
Abstract
Objective To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts. Materials and Methods The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h. Results After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h. Conclusion The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors.
Collapse
Affiliation(s)
- Miao Zheng
- Department of Prosthodontics, Peking University School of Stomatology, 22# Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Yang
- Department of Prosthodontics, Peking University School of Stomatology, 22# Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiao-Qiang Liu
- Department of Prosthodontics, Peking University School of Stomatology, 22# Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ming-Yue Liu
- Department of Prosthodontics, Peking University School of Stomatology, 22# Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiao-Fei Zhang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xin Wang
- College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063009, People's Republic of China
| | - He-Ping Li
- Department of Engineering Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jian-Guo Tan
- Department of Prosthodontics, Peking University School of Stomatology, 22# Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| |
Collapse
|
40
|
Kim TK, Bheda-Malge A, Lin Y, Sreekrishna K, Adams R, Robinson MK, Bascom CC, Tiesman JP, Isfort RJ, Gelinas R. A systems approach to understanding human rhinovirus and influenza virus infection. Virology 2015; 486:146-57. [PMID: 26437235 PMCID: PMC7111289 DOI: 10.1016/j.virol.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/28/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023]
Abstract
Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation. Human bronchial epithelial cells (BEAS-2B) were infected with rhinovirus (RV16), influenza A virus (H1N1) or both viruses. Steady-state RNA was profiled from five biological replicate samples by microarray hybridization at multiple times over three days. The changing patterns of key biological processes for each virus or both viruses together were analyzed. The data reveal similarities and differences in innate immune responses, cytokine activation, regulation of apoptosis as well as other processes that have implications for host recovery from viral infection.
Collapse
Affiliation(s)
- Taek-Kyun Kim
- The Institute for Systems Biology, Seattle, WA 98109, USA.
| | | | - Yakang Lin
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | - Rachel Adams
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | | | - Jay P Tiesman
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | | |
Collapse
|
41
|
Getsios S, Kelsell DP, Forge A. Junctions in human health and inherited disease. Cell Tissue Res 2015; 360:435-8. [PMID: 25861756 PMCID: PMC4942125 DOI: 10.1007/s00441-015-2171-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Spiro Getsios
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Ward 9-132, Chicago, IL 60611, USA,
| | | | | |
Collapse
|