1
|
Tian J, Li Y, Bao X, Yang F, Tang X, Jiang Q, Yin Y, Yao K. Early weaning causes small intestinal atrophy by inhibiting the activity of intestinal stem cells: involvement of Wnt/β-catenin signaling. Stem Cell Res Ther 2023; 14:65. [PMID: 37020258 PMCID: PMC10077674 DOI: 10.1186/s13287-023-03293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Early weaning and shorter breastfeeding duration are applied by a proportion of young mothers, especially in the social spheres of poverty-stricken areas. Early childhood is a critical period for intestinal development, which is driven by intestinal stem cells (ISCs). However, how early weaning practice affects the function of ISCs to mediate intestinal development remains unclear. METHODS We established an excellent early weaning mice model that has significant intestinal atrophy and growth arrest symptoms to explore the responses of ISCs to early weaning. The primary and passaged intestinal organoids from the suckling or early weaning mice were cultured to explore the underlying mechanism of early weaning affecting the ISCs. RESULTS Early weaning depressed the self-renewal of ISCs and attenuated the activity of ISCs-driven intestinal epithelial regeneration and crypt expansion in vivo and ex-vivo. Further results showed that early weaning retarded the differentiation of ISCs into transit-amplifying cells and Paneth cells, and accelerated the apoptosis of villous epithelial cells, jointly leading to intestinal epithelial atrophy. Mechanistically, early weaning inhibited Wnt signaling in ISCs, while an exogenous Wnt amplifier restored ISCs' function in ex-vivo. CONCLUSION Our findings indicate that early weaning depresses the activity of ISCs via attenuating Wnt/β-catenin signaling and triggers the proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-17 in jejunum, thereby impeding ISCs-driven epithelial regeneration and intestinal growth, which may provide a basal theory for the development of infant nutrients targeting stem cells to alleviate early weaning-induced intestinal problems.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Yuying Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Xiongzhuo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Sciences, Beijing, 100008, China.
| |
Collapse
|
2
|
Stewart AS, Schaaf CR, Veerasammy B, Freund JM, Gonzalez LM. Culture of equine intestinal epithelial stem cells after delayed tissue storage for future applications. BMC Vet Res 2022; 18:445. [PMID: 36564773 PMCID: PMC9783463 DOI: 10.1186/s12917-022-03552-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Equine intestinal epithelial stem cells (ISCs) serve as potential targets to treat horses with severe intestinal injury. The ability to isolate and store ISCs from intestinal biopsies creates an opportunity for both in vitro experiments to study ISC dynamics in a variety of intestinal diseases, and, in the future, utilize these cells as a possible therapy. If biopsies could be successfully stored prior to processing for ISCs, this would increase the availability of sample repositories for future experimental and therapeutic use. However, delayed culture of equine ISCs following prolonged sample storage has not been described. The objective of this study was to describe the isolation and culture of equine ISCs following delayed tissue storage. Small intestinal full thickness biopsies were collected post euthanasia. Fresh tissue was immediately processed or stored at 4 °C for 24, 48 and 72 h (H) before processing. Intestinal stem cells (crypts) were dissociated and cultured. Size, growth efficiency and proliferation potential were compared between resultant enteroids ("mini-guts") derived from each storage timepoint. In a separate study, growth efficiency of cryopreserved crypts was compared to cryopreserved enteroid fragments to investigate prolonged storage techniques. RESULTS Intestinal crypts were successfully isolated and cultured from all timepoints. At 72H post initial collection, the intestine was friable with epithelial sloughing; resultant dissociation yielded more partial crypts. Enteroids grown from crypts isolated at 72H were smaller with less proliferative potential (bud units, (median 6.5, 3.75-14.25)) than control (median 25, 15-28, p < 0.0001). No statistical differences were noted from tissues stored for 24H compared to control. Following cryopreservation, growth efficiency improved when cells were stored as enteroid fragments (median 81.6%, 66.2-109) compared to crypts (median 21.2%, 20-21.5, p = 0.01). The main limitations included a small sample size and lack of additional functional assays on enteroids. CONCLUSIONS Equine ISCs can be isolated and cultured after prolonged tissue storage. Resultant enteroids had minimal differences even after 24-48H of whole tissue storage. This suggests that ISCs could be isolated for several days from samples properly stored after procedures, including surgery or necropsy, and used to create ISC repositories for study or therapy of equine intestinal diseases.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- grid.40803.3f0000 0001 2173 6074Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Cecilia R. Schaaf
- grid.40803.3f0000 0001 2173 6074Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Brittany Veerasammy
- grid.40803.3f0000 0001 2173 6074Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - John M. Freund
- grid.40803.3f0000 0001 2173 6074Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Liara M. Gonzalez
- grid.40803.3f0000 0001 2173 6074Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607 USA
| |
Collapse
|
3
|
Tecos ME, Steinberger AE, Guo J, Warner BW. Distal Small Bowel Resection Yields Enhanced Intestinal and Colonic Adaptation. J Surg Res 2022; 273:100-109. [PMID: 35033819 PMCID: PMC10364185 DOI: 10.1016/j.jss.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Murine ileocecal resection (ICR) has been used to investigate intestinal adaptation. The established model often includes the sacrifice of significant length of the proximal colon. Here, we optimized a highly selective vascular approach to the ICR, with primary jejunal-colic anastomosis yielding maximal colonic preservation. MATERIALS AND METHODS Forty C57BL/6 mice underwent a highly vascularly selective ICR. The terminal branches of the ileocecal artery are isolated apart from the mesenteric branches supplying the small bowel to be resected. The distal 50% of small bowel and cecum are resected; a primary jejuno-colonic anastomosis is performed. Animals were sacrificed at postoperative weeks 2 (n = 10) and 10 (n = 29). Proximal 50% small bowel resection (SBR) with jejuno-ileal anastomosis was also performed for comparison. RESULTS The entire colon (with exception of the cecum) was preserved in 100% of animals. Ninety-seven percent of animals survived to postoperative week 10, and all exhibited structural adaptation in the remnant small intestine epithelium. Crypts deepened by 175%, and villi lengthened by 106%, versus 39% and 29% in the proximal SBR cohort, respectively. Colonic proliferation, structural adaptation, and functional adaptation (measured by p-histone 3, luminal-facing apical crypt border size, and sucrase isomaltase, respectively) were increased in ICR compared with proximal SBR. CONCLUSIONS Highly selective isolation of the cecal vasculature allows for greater colon preservation and yields enhanced remnant intestine epithelial adaptation. ICR is also associated with greater colonic adaptation and unique plasticity toward an intestinal phenotype. These findings underscore major differences between resection sites and offer insights into the critical adaptive mechanisms in response to massive intestinal loss.
Collapse
Affiliation(s)
- Maria E Tecos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington, University in St. Louis School of Medicine, St. Louis, Missouri; Division of General Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Allie E Steinberger
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington, University in St. Louis School of Medicine, St. Louis, Missouri; Division of General Surgery, Department of Surgery, Barnes Jewish Hospital, Washington, University in St. Louis School of Medicine, St. Louis, Missouri
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington, University in St. Louis School of Medicine, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington, University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
4
|
Andersen CL, Byun H, Li Y, Xiao S, Miller DM, Wang Z, Viswanathan S, Hancock JM, Bromfield J, Ye X. Varied effects of doxorubicin (DOX) on the corpus luteum of C57BL/6 mice during early pregnancy. Biol Reprod 2021; 105:1521-1532. [PMID: 34554181 DOI: 10.1093/biolre/ioab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/22/2021] [Indexed: 11/14/2022] Open
Abstract
Certain chemotherapeutic drugs are toxic to ovarian follicles. The corpus luteum (CL) is normally developed from an ovulated follicle for producing progesterone (P4) to support early pregnancy. To fill in the knowledge gap about effects of chemotherapy on the CL, we tested the hypothesis that chemotherapy may target endothelial cells and/or luteal cells in the CL to impair CL function in P4 steroidogenesis using doxorubicin (DOX) as a representative chemotherapeutic drug in mice. In both mixed background mice and C57BL/6 mice, a single intraperitoneal injection of DOX (10 mg/kg) on 0.5 days post coitum (D0.5, post-ovulation) led to ~58% D3.5 mice with serum P4 levels lower than the serum P4 range in the PBS-treated control mice. Further studies in the C57BL/6 ovaries revealed that CLs from DOX-treated mice with low P4 levels had less defined luteal cords and disrupted collagen IV expression pattern, indicating disrupted capillary, accompanied with less differentiated luteal cells that had smaller cytoplasm and reduced StAR expression. DOX-treated ovaries had increased granulosa cell death in the growing follicles, reduced PCNA-positive endothelial cells in the CLs, enlarged lipid droplets and disrupted F-actin in the luteal cells. These novel data suggest that the proliferating endothelial cells in the developing CL may be the primary target of DOX to impair the vascular support for luteal cell differentiation and subsequently P4 steroidogenesis. This study fills in the knowledge gap about the toxic effects of chemotherapy on the CL and provides critical information for risk assessment of chemotherapy in premenopausal patients.
Collapse
Affiliation(s)
- Christian Lee Andersen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA
| | - Haeyeun Byun
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Yuehuan Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Doris M Miller
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Zidao Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA
| | - Suvitha Viswanathan
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jonathan Matthew Hancock
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA
| | - Jaymie Bromfield
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
5
|
Seiler KM, Bajinting A, Alvarado DM, Traore MA, Binkley MM, Goo WH, Lanik WE, Ou J, Ismail U, Iticovici M, King CR, VanDussen KL, Swietlicki EA, Gazit V, Guo J, Luke CJ, Stappenbeck T, Ciorba MA, George SC, Meacham JM, Rubin DC, Good M, Warner BW. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Sci Rep 2020; 10:3842. [PMID: 32123209 PMCID: PMC7051952 DOI: 10.1038/s41598-020-60672-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.
Collapse
Grants
- R01 HD105301 NICHD NIH HHS
- R01 DK106382 NIDDK NIH HHS
- T32 DK007130 NIDDK NIH HHS
- R01 DK104698 NIDDK NIH HHS
- R01 DK114047 NIDDK NIH HHS
- R03 DK111473 NIDDK NIH HHS
- R01 DK109384 NIDDK NIH HHS
- R01 DK118568 NIDDK NIH HHS
- R01 DK112378 NIDDK NIH HHS
- K08 DK101608 NIDDK NIH HHS
- P30 DK052574 NIDDK NIH HHS
- T32 HD043010 NICHD NIH HHS
- K01 DK109081 NIDDK NIH HHS
- Association for Academic Surgery Foundation (AASF)
- Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-F-2017-629; National Institutes of Health 4T32HD043010-14
- National Institutes of Health 3T32DK007130-45S1
- Givin’ it all for Guts Foundation (https://givinitallforguts.org/), Lawrence C. Pakula MD IBD Research, Innovation, and Education Fund, National Institutes of Health R01DK109384
- National Institutes of Health R03DK111473, R01DK118568, and K08DK101608, Children’s Discovery Institute of Washington University in St. Louis and St. Louis Children’s Hospital MI-FR-2017-596, March of Dimes Foundation Grant No. 5-FY17-79, Department of Pediatrics at Washington University School of Medicine, St. Louis
Collapse
Affiliation(s)
- Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Adam Bajinting
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - David M Alvarado
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mahama A Traore
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Michael M Binkley
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - William H Goo
- Washington University, St. Louis, Missouri, United States
| | - Wyatt E Lanik
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jocelyn Ou
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Usama Ismail
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Micah Iticovici
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cristi R King
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kelli L VanDussen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elzbieta A Swietlicki
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Vered Gazit
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Cliff J Luke
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Thaddeus Stappenbeck
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Matthew A Ciorba
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California, United States
| | - J Mark Meacham
- Department of Mechanical Engineering & Materials Science, Washington University McKelvey School of Engineering, St. Louis, MO, United States
| | - Deborah C Rubin
- Division of Gastroenterology and the Inflammatory Bowel Diseases Center, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Misty Good
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States.
| |
Collapse
|
6
|
Boone PG, Rochelle LK, Ginzel JD, Lubkov V, Roberts WL, Nicholls PJ, Bock C, Flowers ML, von Furstenberg RJ, Stripp BR, Agarwal P, Borowsky AD, Cardiff RD, Barak LS, Caron MG, Lyerly HK, Snyder JC. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat Commun 2019; 10:5490. [PMID: 31792216 PMCID: PMC6889384 DOI: 10.1038/s41467-019-13330-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.
Collapse
Affiliation(s)
- Peter G Boone
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lauren K Rochelle
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Veronica Lubkov
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wendy L Roberts
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - P J Nicholls
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Cheryl Bock
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Mei Lang Flowers
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Richard J von Furstenberg
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Barry R Stripp
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pankaj Agarwal
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Robert D Cardiff
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Larry S Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua C Snyder
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Das D, Fletcher RB, Ngai J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e361. [PMID: 31468728 DOI: 10.1002/wdev.361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Epithelia in adult mammals exhibit remarkable regenerative capacities owing to the presence of adult stem cells, which self-renew and differentiate to replace cells lost to normal turnover or injury. The mechanisms supporting tissue homeostasis and injury-induced repair often differ from each other as well as from those used in embryonic development. Recent studies have also highlighted the phenomenon of cellular plasticity in adult tissues, in which differentiated cells can change fate and even give rise to new stem cell populations to complement the canonical stem cells in promoting repair following injury. Signaling pathways such as WNT, bone morphogenetic protein, and Sonic Hedgehog play critical roles in stem cell maintenance and cell fate decisions across diverse epithelia and conditions, suggesting that conserved mechanisms underlie the regenerative capacity of adult epithelial structures. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Berkeley Institute for Data Science, University of California, Berkeley, California
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,QB3 Functional Genomics Laboratory, University of California, Berkeley, California
| |
Collapse
|
8
|
Greicius G, Virshup DM. Stromal control of intestinal development and the stem cell niche. Differentiation 2019; 108:8-16. [DOI: 10.1016/j.diff.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
9
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
10
|
Cellular Interactions in the Intestinal Stem Cell Niche. Arch Immunol Ther Exp (Warsz) 2018; 67:19-26. [PMID: 30242440 PMCID: PMC6434028 DOI: 10.1007/s00005-018-0524-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Epithelial cells are one of the most actively cycling cells in a mammalian organism and therefore are prone to malignant transformation. Already during organogenesis, the connective tissue (mesenchyme) provides instructive signals for the epithelium. In an adult organism, the mesenchyme is believed to provide crucial regulatory signals for the maintenance and regeneration of epithelial cells. Here, we discuss the role of intestinal myofibroblasts, α-smooth muscle actin-positive stromal (mesenchymal) cells, as an important regulatory part of the intestinal stem cell niche. Better understanding of the cross-talk between myofibroblasts and the epithelium in the intestine has implications for advances in regenerative medicine, and improved therapeutic strategies for inflammatory bowel disease, intestinal fibrosis and colorectal cancer.
Collapse
|
11
|
Schoenborn AA, von Furstenberg RJ, Valsaraj S, Hussain FS, Stein M, Shanahan MT, Henning SJ, Gulati AS. The enteric microbiota regulates jejunal Paneth cell number and function without impacting intestinal stem cells. Gut Microbes 2018; 10:45-58. [PMID: 29883265 PMCID: PMC6363071 DOI: 10.1080/19490976.2018.1474321] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 04/06/2018] [Accepted: 05/01/2018] [Indexed: 02/03/2023] Open
Abstract
Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.
Collapse
Affiliation(s)
- Alexi A Schoenborn
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- b Department of Pediatrics, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Richard J von Furstenberg
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- c Department of Medicine, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Smrithi Valsaraj
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- b Department of Pediatrics, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Farah S Hussain
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- c Department of Medicine, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Molly Stein
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- b Department of Pediatrics, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Michael T Shanahan
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- c Department of Medicine, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Susan J Henning
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- c Department of Medicine, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- d Department of Cellular and Molecular Physiology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Ajay S Gulati
- a Center for Gastrointestinal Biology and Disease , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- b Department of Pediatrics, Division of Gastroenterology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
- e Department of Pathology and Laboratory Medicine , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| |
Collapse
|
12
|
Zou WY, Blutt SE, Zeng XL, Chen MS, Lo YH, Castillo-Azofeifa D, Klein OD, Shroyer NF, Donowitz M, Estes MK. Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Rep 2018; 22:1003-1015. [PMID: 29386123 DOI: 10.1016/j.celrep.2017.12.093] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/16/2017] [Accepted: 12/24/2017] [Indexed: 12/25/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain and repair the intestinal epithelium. While regeneration after ISC-targeted damage is increasingly understood, injury-repair mechanisms that direct regeneration following injuries to differentiated cells remain uncharacterized. The enteric pathogen, rotavirus, infects and damages differentiated cells while sparing all ISC populations, thus allowing the unique examination of the response of intact ISC compartments during injury-repair. Upon rotavirus infection in mice, ISC compartments robustly expand and proliferating cells rapidly migrate. Infection results specifically in stimulation of the active crypt-based columnar ISCs, but not alternative reserve ISC populations, as is observed after ISC-targeted damage. Conditional ablation of epithelial WNT secretion diminishes crypt expansion and ISC activation, demonstrating a previously unknown function of epithelial-secreted WNT during injury-repair. These findings indicate a hierarchical preference of crypt-based columnar cells (CBCs) over other potential ISC populations during epithelial restitution and the importance of epithelial-derived signals in regulating ISC behavior.
Collapse
Affiliation(s)
- Winnie Y Zou
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min-Shan Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan-Hung Lo
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Castillo-Azofeifa
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Carr JS, King S, Dekaney CM. Depletion of enteric bacteria diminishes leukocyte infiltration following doxorubicin-induced small intestinal damage in mice. PLoS One 2017; 12:e0173429. [PMID: 28257503 PMCID: PMC5336284 DOI: 10.1371/journal.pone.0173429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS While enteric bacteria have been shown to play a critical role in other forms of intestinal damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin (Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage and, more specifically, in mediating chemokine expression and leukocyte infiltration following Doxo treatment. An understanding of this pathway may allow for development of intervention strategies to reduce chemotherapy-induced small intestinal damage. METHODS Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four weeks and then with Doxo. Jejunal tissues were collected at various time points following Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and macrophage and neutrophil number. In addition, RNA expression of inflammatory markers (TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR. RESULTS In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of macrophages and neutrophils. In contrast, while still positive for induction of apoptosis following Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in NoAbx mice nor the increased chemokine expression and leukocyte infiltration. CONCLUSION Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associated with an increase in immune-modulating chemokines and cells. Manipulation of enteric bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-induced small intestinal damage.
Collapse
Affiliation(s)
- Jacquelyn S. Carr
- Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephanie King
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, North Carolina, United States of America
| | - Christopher M. Dekaney
- Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Molecular Biomedical Sciences, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
14
|
Peck BCE, Mah AT, Pitman WA, Ding S, Lund PK, Sethupathy P. Functional Transcriptomics in Diverse Intestinal Epithelial Cell Types Reveals Robust MicroRNA Sensitivity in Intestinal Stem Cells to Microbial Status. J Biol Chem 2017; 292:2586-2600. [PMID: 28053090 DOI: 10.1074/jbc.m116.770099] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Indexed: 01/01/2023] Open
Abstract
Gut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate interactions between microbiota and the intestinal epithelium are not fully understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell type-specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared with miRNAs in any other intestinal epithelial cell subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knock down gene expression in Lgr5+ IESCs. Furthermore, when we knock down miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other intestinal epithelial cell subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function.
Collapse
Affiliation(s)
- Bailey C E Peck
- From the Curriculum in Genetics and Molecular Biology, .,Department of Genetics
| | | | | | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - P Kay Lund
- From the Curriculum in Genetics and Molecular Biology.,Department of Nutrition, and.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Praveen Sethupathy
- From the Curriculum in Genetics and Molecular Biology, .,Department of Genetics
| |
Collapse
|
15
|
Beumer J, Clevers H. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 2016; 143:3639-3649. [PMID: 27802133 DOI: 10.1242/dev.133132] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The intestinal epithelium is the fastest renewing tissue in mammals and has a large flexibility to adapt to different types of damage. Lgr5+ crypt base columnar (CBC) cells act as stem cells during homeostasis and are essential during regeneration. Upon perturbation, the activity of CBCs is dynamically regulated to maintain homeostasis and multiple dedicated progenitor cell populations can reverse to the stem cell state upon damage, adding another layer of compensatory mechanisms to facilitate regeneration. Here, we review our current understanding of how intestinal stem and progenitor cells contribute to homeostasis and regeneration, and the different signaling pathways that regulate their behavior. Nutritional state and inflammation have been recently identified as upstream regulators of stem cell activity in the mammalian intestine, and we explore how these systemic signals can influence homeostasis and regeneration.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute for Developmental Biology and Stem Cell Research, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
16
|
Henning SJ, von Furstenberg RJ. GI stem cells - new insights into roles in physiology and pathophysiology. J Physiol 2016; 594:4769-79. [PMID: 27107928 DOI: 10.1113/jp271663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles.
Collapse
Affiliation(s)
- Susan J Henning
- Department of Medicine - Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7555, USA
| | | |
Collapse
|
17
|
Tadokoro T, Gao X, Hong CC, Hotten D, Hogan BLM. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development 2016; 143:764-73. [PMID: 26811382 PMCID: PMC4813333 DOI: 10.1242/dev.126656] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
The pseudostratified epithelium of the lung contains ciliated and secretory luminal cells and basal stem/progenitor cells. To identify signals controlling basal cell behavior we screened factors that alter their self-renewal and differentiation in a clonal organoid (tracheosphere) assay. This revealed that inhibitors of the canonical BMP signaling pathway promote proliferation but do not affect lineage choice, whereas exogenous Bmp4 inhibits proliferation and differentiation. We therefore followed changes in BMP pathway components in vivo in the mouse trachea during epithelial regeneration from basal cells after injury. The findings suggest that BMP signaling normally constrains proliferation at steady state and this brake is released transiently during repair by the upregulation of endogenous BMP antagonists. Early in repair, the packing of epithelial cells along the basal lamina increases, but density is later restored by active extrusion of apoptotic cells. Systemic administration of the BMP antagonist LDN-193189 during repair initially increases epithelial cell number but, following the shedding phase, normal density is restored. Taken together, these results reveal crucial roles for both BMP signaling and cell shedding in homeostasis of the respiratory epithelium. Summary: In the mouse airway epithelium, regeneration after injury involves transient downregulation of BMP signaling to promote proliferation, followed by cell shedding to restore cell density.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Department of Cell Biology, Duke Medicine, Durham, NC 27710, USA
| | - Xia Gao
- Department of Cell Biology, Duke Medicine, Durham, NC 27710, USA
| | - Charles C Hong
- Department of Medicine-Cardiovascular Medicine, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Danielle Hotten
- Department of Medicine, Division of Cardiology, Duke Medicine, Durham, NC 27710, USA
| | - Brigid L M Hogan
- Department of Cell Biology, Duke Medicine, Durham, NC 27710, USA
| |
Collapse
|