1
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
2
|
Koutroumpa F, Monsempès C, Anton S, François MC, Montagné N, Jacquin-Joly E. Pheromone Receptor Knock-Out Affects Pheromone Detection and Brain Structure in a Moth. Biomolecules 2022; 12:341. [PMID: 35327533 PMCID: PMC8945201 DOI: 10.3390/biom12030341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023] Open
Abstract
Sex pheromone receptors are crucial in insects for mate finding and contribute to species premating isolation. Many pheromone receptors have been functionally characterized, especially in moths, but loss of function studies are rare. Notably, the potential role of pheromone receptors in the development of the macroglomeruli in the antennal lobe (the brain structures processing pheromone signals) is not known. Here, we used CRISPR-Cas9 to knock-out the receptor for the major component of the sex pheromone of the noctuid moth Spodoptera littoralis, and investigated the resulting effects on electrophysiological responses of peripheral pheromone-sensitive neurons and on the structure of the macroglomeruli. We show that the inactivation of the receptor specifically affected the responses of the corresponding antennal neurons did not impact the number of macroglomeruli in the antennal lobe but reduced the size of the macroglomerulus processing input from neurons tuned to the main pheromone component. We suggest that this mutant neuroanatomical phenotype results from a lack of neuronal activity due to the absence of the pheromone receptor and potentially reduced neural connectivity between peripheral and antennal lobe neurons. This is the first evidence of the role of a moth pheromone receptor in macroglomerulus development and extends our knowledge of the different functions odorant receptors can have in insect neurodevelopment.
Collapse
Affiliation(s)
- Fotini Koutroumpa
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Sylvia Anton
- Institute for Genetics, Environment and Plant Protection, INRAE, Institut Agro, Université Rennes 1, 49045 Angers, France;
| | - Marie-Christine François
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, 78000 Versailles, France; (F.K.); (C.M.); (M.-C.F.); (N.M.)
| |
Collapse
|
3
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
4
|
Morris BJ, Couto A, Aydin A, Montgomery SH. Re-emergence and diversification of a specialized antennal lobe morphology in ithomiine butterflies. Evolution 2021; 75:3191-3202. [PMID: 34383301 DOI: 10.1111/evo.14324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
How an organism's sensory system functions is central to how it navigates its environment. The insect olfactory system is a prominent model for investigating how ecological factors impact sensory reception and processing. Notably, work in Lepidoptera led to the discovery of vastly expanded structures, termed macroglomerular complexes (MGCs), within the primary olfactory processing centre. MGCs typically process pheromonal cues, are usually larger in males, and provide classic examples of how variation in the size of neural structures reflects the importance of sensory cues. Though prevalent across moths, MGCs were lost during the origin of butterflies, consistent with evidence that courtship initiation in butterflies is primarily reliant on visual cues, rather than long distance chemical signals. However, an MGC was recently described in a species of ithomiine butterfly, suggesting that this once lost neural adaptation has re-emerged in this tribe. Here, we show that MGC-like morphologies are widely distributed across ithomiines, but vary in both their structure and prevalence of sexual dimorphism. Based on this interspecific variation we suggest that the ithomiine MGC is involved in processing both plant and pheromonal cues, which have similarities in their chemical constitution, and co-evolved with an increased importance of plant derived chemical compounds.
Collapse
Affiliation(s)
- Billy J Morris
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Antoine Couto
- Department of Zoology, University of Cambridge, Cambridge, UK.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Asli Aydin
- School of Medicine, Koc University, Rumelifeneri Yolu, Istanbul, Turkey
| | | |
Collapse
|
5
|
Li G, Hidalgo A. The Toll Route to Structural Brain Plasticity. Front Physiol 2021; 12:679766. [PMID: 34290618 PMCID: PMC8287419 DOI: 10.3389/fphys.2021.679766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain can change throughout life as we learn, adapt and age. A balance between structural brain plasticity and homeostasis characterizes the healthy brain, and the breakdown of this balance accompanies brain tumors, psychiatric disorders, and neurodegenerative diseases. However, the link between circuit modifications, brain function, and behavior remains unclear. Importantly, the underlying molecular mechanisms are starting to be uncovered. The fruit-fly Drosophila is a very powerful model organism to discover molecular mechanisms and test them in vivo. There is abundant evidence that the Drosophila brain is plastic, and here we travel from the pioneering discoveries to recent findings and progress on molecular mechanisms. We pause on the recent discovery that, in the Drosophila central nervous system, Toll receptors—which bind neurotrophin ligands—regulate structural plasticity during development and in the adult brain. Through their topographic distribution across distinct brain modules and their ability to switch between alternative signaling outcomes, Tolls can enable the brain to translate experience into structural change. Intriguing similarities between Toll and mammalian Toll-like receptor function could reveal a further involvement in structural plasticity, degeneration, and disease in the human brain.
Collapse
Affiliation(s)
- Guiyi Li
- Plasticity and Regeneration Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Alicia Hidalgo
- Plasticity and Regeneration Lab, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
7
|
Eriksson M, Janz N, Nylin S, Carlsson MA. Structural plasticity of olfactory neuropils in relation to insect diapause. Ecol Evol 2020; 10:14423-14434. [PMID: 33391725 PMCID: PMC7771155 DOI: 10.1002/ece3.7046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large.Insects that go through diapause as adults generally do so before entering the season of reproduction. This order of events introduces a conflict between maintaining low metabolism during dormancy and emerging afterward with highly developed sensory systems that improve fitness during the mating season.We investigated the timing of when investments into the olfactory system are made by measuring the volumes of primary and secondary olfactory neuropils in the brain as they fluctuate in size throughout the extended diapause life-period of adult Polygonia c-album butterflies.Relative volumes of both olfactory neuropils increase significantly during early adult development, indicating the importance of olfaction to this species, but still remain considerably smaller than those of nondiapausing conspecifics. However, despite butterflies being kept under the same conditions as before the dormancy, their olfactory neuropil volumes decreased significantly during the postdormancy period.The opposing directions of change in relative neuropil volumes before and after diapause dormancy indicate that the investment strategies governing structural plasticity during the two life stages could be functionally distinct. As butterflies were kept in stimulus-poor conditions, we find it likely that investments into these brain regions rely on experience-expectant processes before diapause and experience-dependent processes after diapause conditions are broken.As the shift in investment strategies coincides with a hard shift from premating season to mating season, we argue that these developmental characteristics could be adaptations that mitigate the trade-off between dormancy survival and reproductive fitness.
Collapse
Affiliation(s)
| | - Niklas Janz
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
8
|
Dion E, Pui LX, Weber K, Monteiro A. Early-exposure to new sex pheromone blends alters mate preference in female butterflies and in their offspring. Nat Commun 2020; 11:53. [PMID: 31896746 PMCID: PMC6940390 DOI: 10.1038/s41467-019-13801-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/22/2019] [Indexed: 11/09/2022] Open
Abstract
While the diversity of sex pheromone communication systems across insects is well documented, the mechanisms that lead to such diversity are not well understood. Sex pheromones constitute a species-specific system of sexual communication that reinforces interspecific reproductive isolation. When odor blends evolve, the efficacy of male-female communication becomes compromised, unless preference for novel blends also evolves. We explore odor learning as a possible mechanism leading to changes in sex pheromone preferences in the butterfly Bicyclus anynana. Our experiments reveal mating patterns suggesting that mating bias for new blends can develop following a short learning experience, and that this maternal experience impacts the mating outcome of offspring without further exposure. We propose that odor learning can be a key factor in the evolution of sex pheromone blend recognition and in chemosensory speciation.
Collapse
Affiliation(s)
- Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Li Xian Pui
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Katie Weber
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Yale-NUS-College, 6 College Avenue East, Singapore, 138614, Singapore.
| |
Collapse
|
9
|
Gadenne C, Groh C, Grübel K, Joschinski J, Krauss J, Krieger J, Rössler W, Anton S. Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 52:100883. [PMID: 31568972 DOI: 10.1016/j.asd.2019.100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.
Collapse
Affiliation(s)
- Christophe Gadenne
- UMR IGEPP INRA/Agrocampus Ouest/Université Rennes 1, Agrocampus Ouest, 2 rue le Nôtre, 49045 Angers, France
| | - Claudia Groh
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Joschinski
- Animal Ecology and Tropical Biology (Zoology III), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Krauss
- Animal Ecology and Tropical Biology (Zoology III), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jakob Krieger
- Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstrasse 23, 17489 Greifswald, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sylvia Anton
- UMR IGEPP INRA/Agrocampus Ouest/Université Rennes 1, Agrocampus Ouest, 2 rue le Nôtre, 49045 Angers, France.
| |
Collapse
|
10
|
Eriksson M, Nylin S, Carlsson MA. Insect brain plasticity: effects of olfactory input on neuropil size. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190875. [PMID: 31598254 PMCID: PMC6731737 DOI: 10.1098/rsos.190875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect brains are known to express a high degree of experience-dependent structural plasticity. One brain structure in particular, the mushroom body (MB), has been attended to in numerous studies as it is implicated in complex cognitive processes such as olfactory learning and memory. It is, however, poorly understood to what extent sensory input per se affects the plasticity of the mushroom bodies. By performing unilateral blocking of olfactory input on immobilized butterflies, we were able to measure the effect of passive sensory input on the volumes of antennal lobes (ALs) and MB calyces. We showed that the primary and secondary olfactory neuropils respond in different ways to olfactory input. ALs show absolute experience-dependency and increase in volume only if receiving direct olfactory input from ipsilateral antennae, while MB calyx volumes were unaffected by the treatment and instead show absolute age-dependency in this regard. We therefore propose that cognitive processes related to behavioural expressions are needed in order for the calyx to show experience-dependent volumetric expansions. Our results indicate that such experience-dependent volumetric expansions of calyces observed in other studies may have been caused by cognitive processes rather than by sensory input, bringing some causative clarity to a complex neural phenomenon.
Collapse
|
11
|
Gassias E, Durand N, Demondion E, Bourgeois T, Aguilar P, Bozzolan F, Debernard S. A critical role for Dop1-mediated dopaminergic signaling in the plasticity of behavioral and neuronal responses to sex pheromone in a moth. J Exp Biol 2019; 222:jeb.211979. [DOI: 10.1242/jeb.211979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022]
Abstract
Most animal species, including insects, are able to modulate their responses to sexual chemosignals and this flexibility originates from the remodeling of olfactory areas under the influence of dopaminergic system. In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and after a prior exposure to pheromone signal and this change is accompanied by an increase in neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs). To identify the underlying neuromodulatory mechanisms, we examined whether this age- and experience-dependent olfactory plasticity is mediated by dopamine (DA) through the Dop1 receptor, an ortholog of the vertebrate D1-type dopamine receptors, which is positively coupled to adenylyl cyclase. We cloned A. ipsilon Dop1 (AiDop1) which is expressed predominantly in brain and especially in ALs and its knockdown induced decreased AL cAMP amounts and altered sex pheromone-orientated flight. The levels of DA, AiDop1 expression and cAMP in ALs increased from the third day of adult life and at 24h and 48h following pre-exposure to sex pheromone and the dynamic of these changes correlated with the increased responsiveness to sex pheromone. These results demonstrate that Dop1 is required for the display of male sexual behavior and that age- and experience-related neuronal and behavioral changes are sustained by DA-Dop1 signaling that operates within ALs probably through cAMP-dependent mechanisms in A. ipsilon. Thus, this study expands our understanding of the neuromodulatory mechanisms underlying olfactory plasticity, mechanisms that appear to be highly conserved between insects and mammals.
Collapse
Affiliation(s)
- Edmundo Gassias
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
12
|
Durand N, Chertemps T, Bozzolan F, Maïbèche M. Expression and modulation of neuroligin and neurexin in the olfactory organ of the cotton leaf worm Spodoptera littoralis. INSECT SCIENCE 2017; 24:210-221. [PMID: 26749290 DOI: 10.1111/1744-7917.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family called carboxylesterase-like adhesion molecules (CLAMs) have lost their catalytic properties and are mainly involved in neuro/developmental functions. CLAMs include gliotactins, neurotactins, glutactins, and neuroligins. The latter have for binding partner the neurexin. In insects, the function of these proteins has been mainly studied in Drosophila central nervous system or neuromuscular junction. Some studies suggested a role of neuroligins and neurexin in sensory processing but CLAM expression within sensory systems has not been investigated. Here, we reported the identification of 5 putative CLAMs expressed in the olfactory system of the model pest insect Spodoptera littoralis. One neuroligin, Slnlg4-yll and its putative binding partner neurexin SlnrxI were the most expressed in the antennae and were surprisingly associated with olfactory sensilla. In addition, both transcripts were upregulated in male antennae after mating, known to modulate the sensitivity of the peripheral olfactory system in S. littoralis, suggesting that these molecules could be involved in sensory plasticity.
Collapse
Affiliation(s)
- Nicolas Durand
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Thomas Chertemps
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| |
Collapse
|
13
|
Abrieux A, Mhamdi A, Rabhi KK, Egon J, Debernard S, Duportets L, Tricoire-Leignel H, Anton S, Gadenne C. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect. PLoS One 2016; 11:e0167469. [PMID: 27902778 PMCID: PMC5130270 DOI: 10.1371/journal.pone.0167469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides on behaviour.
Collapse
Affiliation(s)
- Antoine Abrieux
- Neuroéthologie-RCIM, INRA-Université d’Angers, Beaucouzé, France
| | - Amel Mhamdi
- Neuroéthologie-RCIM, INRA-Université d’Angers, Beaucouzé, France
| | | | - Julie Egon
- Neuroéthologie-RCIM, INRA-Université d’Angers, Beaucouzé, France
| | - Stéphane Debernard
- Département d’Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement (IEES), Paris, France
| | - Line Duportets
- Département d’Ecologie Sensorielle, Institut d’Ecologie et des Sciences de l’Environnement (IEES), Paris, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d’Angers, Beaucouzé, France
| | - Christophe Gadenne
- Neuroéthologie-RCIM, INRA-Université d’Angers, Beaucouzé, France
- * E-mail:
| |
Collapse
|
14
|
A global-wide search for sexual dimorphism of glomeruli in the antennal lobe of female and male Helicoverpa armigera. Sci Rep 2016; 6:35204. [PMID: 27725758 PMCID: PMC5057091 DOI: 10.1038/srep35204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 11/17/2022] Open
Abstract
By using immunostaining and three-dimensional reconstruction, the anatomical organization of the antennal lobe glomeruli of the female cotton bollworm Helicoverpa armigera was investigated. Eighty-one glomeruli were identified, 15 of which were not previously discovered. The general anatomical organization of the AL of female is similar to that of male and all glomeruli were classified into four sub-groups, including the female-specific glomerular complex, posterior complex, labial-palp pit organ glomerulus, and ordinary glomeruli. A global-wide comparison on the complete glomerular map of female and male was performed and for the first time the quantitative difference in volume for each individual homologous glomerulus was analyzed. We found that the sexual dimorphism includes not only the sex-specific glomeruli but also some of the other glomeruli. The findings in the present study may provide a reference to examine the antennal-lobe organization more in detail and to identify new glomeruli in other moth species. In addition, the complete identification and global-wide comparison of the sexes provide an important basis for mapping the function of distinct glomeruli and for understanding neural mechanisms underlying sexually dimorphic olfactory behaviors.
Collapse
|