1
|
Ma M, Bao T, Li J, Cao L, Yu B, Hu J, Cheng H, Tian Z. Cryptotanshinone affects HFL-1 cells proliferation by inhibiting cytokines secretion in RAW264.7 cells and ameliorates inflammation and fibrosis in newborn rats with hyperoxia induced lung injury. Front Pharmacol 2023; 14:1192370. [PMID: 37560477 PMCID: PMC10407416 DOI: 10.3389/fphar.2023.1192370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Objective: Bronchopulmonary dysplasia (BPD) is a common complication of prematurity and has no specific treatment option. Moreover, inflammation and fibrosis play a vital role in the development of BPD. Thus, this study aimed to explore the role of the anti-inflammatory and anti-fibrotic drug cryptotanshinone (CTS) in the treatment of inflammation and fibrosis in BPD. Methods: In vivo, Sprague-Dawley rats (male) were divided into air, hyperoxia and CTS groups with different dose interventions (7.5, 15, and 30 mg/kg). A BPD rat model was induced by continuous inhalation of hyperoxia (95%) for 7 days, during which different doses of CTS were injected intraperitoneally. Furthermore, histological examination, hydroxyproline content measurement, Western blot and real-time quantitative polymerase chain reaction were used to detect the levels of inflammation and fibrosis in the tissues. RAW264.7 cells exposed to 95% oxygen were collected and co-cultured with fibroblasts to determine the expression levels of α-SMA, collagen-Ⅰ and MMPs. The levels of pro-inflammatory cytokines such as TNF-α, IL-6 and pro-fibrotic factor TGF-β1 in the supernatants were measured using enzyme-linked immunosorbent assay. Results: Haematoxylin and eosin staining revealed that CTS reduced the inflammatory response in rat lungs. Masson staining revealed that CTS alleviated the level of pulmonary fibrosis. CTS also reduced the levels of TNF-α, IL-6 and TGF-β1 along with the expression of the fibrosis marker α-SMA in lung tissue. Similarly, in vitro analysis revealed that CTS decreased the levels of TNF-α, IL-6 and TGF-β1 expressed in RAW 264.7 cells, and reduced α-SMA, collagen-Ⅰ, MMPs concentrations in HFL-1 cells co-cultured with the supernatant of RAW264.7 cells after hyperoxia. Conclusion: CTS can attenuate the hyperoxia-induced inflammatory response and the level of fibrosis by regulating the levels of inflammatory factors and fibrotic factor TGF-β1 expressed by macrophages, thereby highlighting the therapeutic potential of CTS in the treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
2
|
Leigh RM, Pham A, Rao SS, Vora FM, Hou G, Kent C, Rodriguez A, Narang A, Tan JBC, Chou FS. Machine learning for prediction of bronchopulmonary dysplasia-free survival among very preterm infants. BMC Pediatr 2022; 22:542. [PMID: 36100848 PMCID: PMC9469562 DOI: 10.1186/s12887-022-03602-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is one of the most common and serious sequelae of prematurity. Prompt diagnosis using prediction tools is crucial for early intervention and prevention of further adverse effects. This study aims to develop a BPD-free survival prediction tool based on the concept of the developmental origin of BPD with machine learning. Methods Datasets comprising perinatal factors and early postnatal respiratory support were used for initial model development, followed by combining the two models into a final ensemble model using logistic regression. Simulation of clinical scenarios was performed. Results Data from 689 infants were included in the study. We randomly selected data from 80% of infants for model development and used the remaining 20% for validation. The performance of the final model was assessed by receiver operating characteristics which showed 0.921 (95% CI: 0.899–0.943) and 0.899 (95% CI: 0.848–0.949) for the training and the validation datasets, respectively. Simulation data suggests that extubating to CPAP is superior to NIPPV in BPD-free survival. Additionally, successful extubation may be defined as no reintubation for 9 days following initial extubation. Conclusions Machine learning-based BPD prediction based on perinatal features and respiratory data may have clinical applicability to promote early targeted intervention in high-risk infants.
Collapse
Affiliation(s)
- Rebekah M Leigh
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andrew Pham
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Srinandini S Rao
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Farha M Vora
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gina Hou
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chelsea Kent
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Arvind Narang
- Business Intelligence and Data Governance, Loma Linda University Health, Loma Linda, CA, USA
| | | | - Fu-Sheng Chou
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Kaiser Permanente Riverside Medical Center, 10800 Magnolia Ave., Riverside, CA, 92505, USA.
| |
Collapse
|
3
|
Dyamenahalli K, Garg G, Shupp JW, Kuprys PV, Choudhry MA, Kovacs EJ. Inhalation Injury: Unmet Clinical Needs and Future Research. J Burn Care Res 2020; 40:570-584. [PMID: 31214710 DOI: 10.1093/jbcr/irz055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary and systemic insults from inhalation injury can complicate the care of burn patients and contribute to significant morbidity and mortality. However, recent progress in diagnosis and treatment of inhalation injury has not kept pace with the care of cutaneous thermal injury. There are many challenges unique to inhalation injury that have slowed advancement, including deficiencies in our understanding of its pathophysiology, the relative difficulty and subjectivity of bronchoscopic diagnosis, the lack of diagnostic biomarkers, the necessarily urgent manner in which decisions are made about intubation, and the lack of universal recommendations for the application of mucolytics, anticoagulants, bronchodilators, modified ventilator strategies, and other measures. This review represents a summary of critical shortcomings in our understanding and management of inhalation injury identified by the American Burn Association's working group on Cutaneous Thermal Injury and Inhalation Injury in 2018. It addresses our current understanding of the diagnosis, pathophysiology, and treatment of inhalation injury and highlights topics in need of additional research, including 1) airway repair mechanisms; 2) the airway microbiome in health and after injury; and 3) candidate biomarkers of inhalation injury.
Collapse
Affiliation(s)
- Kiran Dyamenahalli
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado School of Medicine, Aurora
| | - Gaurav Garg
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jeffrey W Shupp
- Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| | - Paulius V Kuprys
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, Illinois
| | - Mashkoor A Choudhry
- Department of Surgery, Burn & Shock Trauma Research Institute, Health Sciences Division, Loyola University, Maywood, Illinois
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado School of Medicine, Aurora
| |
Collapse
|
4
|
Kim SY, Mongey R, Wang P, Rothery S, Gaboriau DCA, Hind M, Griffiths M, Dean CH. The acid injury and repair (AIR) model: A novel ex-vivo tool to understand lung repair. Biomaterials 2020; 267:120480. [PMID: 33157373 DOI: 10.1016/j.biomaterials.2020.120480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/11/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Research into mechanisms underlying lung injury and subsequent repair responses is currently of paramount importance. There is a paucity of models that bridge the gap between in vitro and in vivo research. Such intermediate models are critical for researchers to decipher the mechanisms that drive repair and to test potential new treatments for lung repair and regeneration. Here we report the establishment of a new tool, the Acid Injury and Repair (AIR) model, that will facilitate studies of lung tissue repair. In this model, injury is applied to a restricted area of a precision-cut lung slice using hydrochloric acid, a clinically relevant driver. The surrounding area remains uninjured, thus mimicking the heterogeneous pattern of injury frequently observed in lung diseases. We show that in response to injury, the percentage of progenitor cells (pro surfactant protein C, proSP-C and TM4SF1 positive) significantly increases in the injured region. Whereas in the uninjured area, the percentage of proSP-C/TM4SF1 cells remains unchanged but proliferating cells (Ki67 positive) increase. These effects are modified in the presence of inhibitors of proliferation (Cytochalasin D) and Wnt secretion (C59) demonstrating that the AIR model is an important new tool for research into lung disease pathogenesis and potential regenerative medicine strategies.
Collapse
Affiliation(s)
- Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peizhu Wang
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen Rothery
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK; National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK; Peri-Operative Medicine Department, St Bartholomew's Hospital, London, UK
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK; MRC Harwell Institute, Harwell Campus, Oxfordshire, UK.
| |
Collapse
|
5
|
ERK1/2 Signaling Pathway Activated by EGF Promotes Proliferation, Transdifferentiation, and Migration of Cultured Primary Newborn Rat Lung Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7176169. [PMID: 33083482 PMCID: PMC7559493 DOI: 10.1155/2020/7176169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common and serious complication in premature infants. Lung fibroblasts (LFs) are present in the extracellular matrix and participate in pulmonary development in response to BPD. The aim of this study was to investigate the effect of extracellular signal-regulated kinase (ERK) on LFs cultured from newborn rats. Material and Methods. Primary LFs were isolated and treated with epidermal growth factor (EGF, 20 ng/mL) in the presence or absence of an ERK inhibitor, PD98059 (10 μmol/L). Phosphorylated ERK1/2 (p-ERK1/2) protein levels were determined using immunocytochemistry, western blotting, and real-time reverse transcription quantitative (RT–q)PCR. LF proliferation was examined by flow cytometry and a cell counting kit-8 assay. LF transdifferentiation was examined by protein and mRNA expression of α-smooth muscle actin (α-SMA) by immunocytochemistry, western blotting, and RT–qPCR. LF migration was examined by the transwell method. Results Phosphorylated ERK1/2, which was activated by EGF, promoted LF proliferation by accelerating cell-cycle progression from the G1 to S phase. After treatment with PD98059, the expression of p-ERK1/2 in LFs, cellular proliferation, and the percentage of cells in S phase were significantly decreased. Phosphorylated ERK1/2 also promoted the differentiation of LFs into myofibroblasts through increased α-SMA synthesis and migration. Conclusion The activation of ERK promotes proliferation, transdifferentiation, and migration of lung fibroblasts from newborn rats.
Collapse
|
6
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
7
|
Wu X, van Dijk EM, Ng-Blichfeldt JP, Bos IST, Ciminieri C, Königshoff M, Kistemaker LEM, Gosens R. Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells 2019; 8:cells8101147. [PMID: 31557955 PMCID: PMC6829372 DOI: 10.3390/cells8101147] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/23/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) represents a worldwide concern with high morbidity and mortality, and is believed to be associated with accelerated ageing of the lung. Alveolar abnormalities leading to emphysema are a key characteristic of COPD. Pulmonary alveolar epithelial type 2 cells (AT2) produce surfactant and function as progenitors for type 1 cells. Increasing evidence shows elevated WNT-5A/B expression in ageing and in COPD that may contribute to the disease process. However, supportive roles for WNT-5A/B in lung regeneration were also reported in different studies. Thus, we explored the role of WNT-5A/B on alveolar epithelial progenitors (AEPs) in more detail. We established a Precision-Cut-Lung Slices (PCLS) model and a lung organoid model by co-culturing epithelial cells (EpCAM+/CD45-/CD31-) with fibroblasts in matrigel in vitro to study the impact of WNT-5A and WNT-5B. Our results show that WNT-5A and WNT-5B repress the growth of epithelial progenitors with WNT-5B preferentially restraining the growth and differentiation of alveolar epithelial progenitors. We provide evidence that both WNT-5A and WNT-5B negatively regulate the canonical WNT signaling pathway in alveolar epithelium. Taken together, these findings reveal the functional impact of WNT-5A/5B signaling on alveolar epithelial progenitors in the lung, which may contribute to defective alveolar repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Eline M van Dijk
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, CO 80045 Aurora, USA.
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, CO 80045 Aurora, USA.
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
- Aquilo BV, 9713 AV Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
8
|
You K, Parikh P, Khandalavala K, Wicher SA, Manlove L, Yang B, Roesler A, Roos BB, Teske JJ, Britt RD, Pabelick CM, Prakash YS. Moderate hyperoxia induces senescence in developing human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2019; 317:L525-L536. [PMID: 31411059 DOI: 10.1152/ajplung.00067.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia exposure in premature infants increases the risk of subsequent lung diseases, such as asthma and bronchopulmonary dysplasia. Fibroblasts help maintain bronchial and alveolar integrity. Thus, understanding mechanisms by which hyperoxia influences fibroblasts is critical. Cellular senescence is increasingly recognized as important to the pathophysiology of multiple diseases. We hypothesized that clinically relevant moderate hyperoxia (<50% O2) induces senescence in developing fibroblasts. Using primary human fetal lung fibroblasts, we investigated effects of 40% O2 on senescence, endoplasmic reticulum (ER) stress, and autophagy pathways. Fibroblasts were exposed to 21% or 40% O2 for 7 days with etoposide as a positive control to induce senescence, evaluated by morphological changes, β-galactosidase activity, and DNA damage markers. Senescence-associated secretory phenotype (SASP) profile of inflammatory and profibrotic markers was further assessed. Hyperoxia decreased proliferation but increased cell size. SA-β-gal activity and DNA damage response, cell cycle arrest in G2/M phase, and marked upregulation of phosphorylated p53 and p21 were noted. Reduced autophagy was noted with hyperoxia. mRNA expression of proinflammatory and profibrotic factors (TNF-α, IL-1, IL-8, MMP3) was elevated by hyperoxia or etoposide. Hyperoxia increased several SASP factors (PAI-1, IL1-α, IL1-β, IL-6, LAP, TNF-α). The secretome of senescent fibroblasts promoted extracellular matrix formation by naïve fibroblasts. Overall, we demonstrate that moderate hyperoxia enhances senescence in primary human fetal lung fibroblasts with reduced autophagy but not enhanced ER stress. The resulting SASP is profibrotic and may contribute to abnormal repair in the lung following hyperoxia.
Collapse
Affiliation(s)
- Kai You
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Pavan Parikh
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Karl Khandalavala
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Sarah A Wicher
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Logan Manlove
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Binxia Yang
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Annie Roesler
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Ben B Roos
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Jacob J Teske
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Rodney D Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Christina M Pabelick
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Hu Y, Fu J, Xue X. Association of the proliferation of lung fibroblasts with the ERK1/2 signaling pathway in neonatal rats with hyperoxia-induced lung fibrosis. Exp Ther Med 2018; 17:701-708. [PMID: 30651853 PMCID: PMC6307421 DOI: 10.3892/etm.2018.6999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common, serious complication occurring in premature infants. Although clinical characteristics and pathologic changes are well described, the pathogenesis of alveolar dysplasia and interstitial fibrosis is less clear. Lung fibroblasts (LFs) are present in the extracellular matrix and serve essential roles during pulmonary epithelial injury and in response to fibrosis development in BPD. The current study investigated hyperoxia-induced proliferation of primary LFs in vitro and mechanisms that may be involved. Newborn rats were exposed to 90% oxygen, while control rats were kept in normal atmosphere. Primary LFs were isolated on postnatal day 3, 7 and 14. Hyperoxia-induced proliferation of LFs isolated on day 7 and 14 by accelerating the cell cycle progression from G1 to S phase. Collagen type I protein secretion and mRNA expression on day 7 and 14 were increased by hyperoxia compared with the controls. Hyperoxia significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and significantly increased collagen type I expression compared with the room air control group. The findings indicated that an increase in LF proliferation in response to hyperoxia was associated with ERK1/2 phosphorylation. This mechanism may contribute to over-proliferation of LFs leading to disturbed formation of normal alveoli.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
10
|
Gouveia L, Betsholtz C, Andrae J. PDGF-A signaling is required for secondary alveolar septation and controls epithelial proliferation in the developing lung. Development 2018; 145:145/7/dev161976. [DOI: 10.1242/dev.161976] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/13/2018] [Indexed: 01/25/2023]
Abstract
ABSTRACT
Platelet-derived growth factor A (PDGF-A) signaling through PDGF receptor α is essential for alveogenesis. Previous studies have shown that Pdgfa−/− mouse lungs have enlarged alveolar airspace with absence of secondary septation, both distinctive features of bronchopulmonary dysplasia. To study how PDGF-A signaling is involved in alveogenesis, we generated lung-specific Pdgfa knockout mice (Pdgfafl/−; Spc-cre) and characterized their phenotype postnatally. Histological differences between mutant mice and littermate controls were visible after the onset of alveogenesis and maintained until adulthood. Additionally, we generated Pdgfafl/−; Spc-cre; PdgfraGFP/+ mice in which Pdgfra+ cells exhibit nuclear GFP expression. In the absence of PDGF-A, the number of PdgfraGFP+ cells was significantly decreased. In addition, proliferation of PdgfraGFP+ cells was reduced. During alveogenesis, PdgfraGFP+ myofibroblasts failed to form the α-smooth muscle actin rings necessary for alveolar secondary septation. These results indicate that PDGF-A signaling is involved in myofibroblast proliferation and migration. In addition, we show an increase in both the number and proliferation of alveolar type II cells in Pdgfafl/−; Spc-cre lungs, suggesting that the increased alveolar airspace is not caused solely by deficient myofibroblast function.
Collapse
Affiliation(s)
- Leonor Gouveia
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
- Integrated Cardio Metabolic Centre, Karolinska Institute, SE-141 57 Huddinge, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
11
|
Opitz L, Kling KM, Brandenberger C, Mühlfeld C. Lipid-body containing interstitial cells (lipofibroblasts) in the lungs of various mouse strains. J Anat 2017; 231:970-977. [PMID: 28786110 DOI: 10.1111/joa.12677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 11/26/2022] Open
Abstract
Pulmonary alveolar septa are thought to contain at least two types of fibroblasts that are termed myofibroblasts and lipofibroblasts based on their morphological characteristics. Lipofibroblasts possess cytoplasmic lipid inclusions (lipid bodies or droplets) and are involved in several important functions, such as surfactant synthesis, development, vitamin A storage and presumably regeneration. As vitamin A was shown to reduce pulmonary emphysema in several but not all mouse and rat strains, we hypothesized that these strain differences might be explained by a differential occurrence of lipofibroblasts and their lipid bodies in various mouse strains. Therefore, mouse lungs of six strains (NMRI, BALB/c, C3H/HeJ, C57BL/6J, C57BL/6N and FVB/N) were investigated by light and electron microscopic stereology to quantify the amount of lipid bodies and the composition of alveolar septa. Lipofibroblasts were observed qualitatively by transmission electron microscopy in every investigated mouse strain. The total volume and the volume-weighted mean volume of lipid bodies were similar in all mouse strains. The results on the composition of the interalveolar septa did not show major differences between the groups. The only mouse strain that differed significantly from the other strains was the NMRI strain because the lungs had a higher volume and consequently many of the morphological parameters were also larger than in the other groups. In conclusion, the present study showed that lipofibroblasts are a common cell type in the mouse lung across various strains. Therefore, the mere presence or absence of lipofibroblasts does not explain differences in the pulmonary regenerative potential among mouse strains.
Collapse
Affiliation(s)
- Luka Opitz
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Katharina Maria Kling
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
12
|
Development, remodeling and regeneration of the lung: coping with the structural and functional challenges of breathing. Cell Tissue Res 2017; 367:407-411. [DOI: 10.1007/s00441-016-2568-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|