1
|
Lento M, Vommaro ML, Flaminio S, Brandmayr P, Giglio A. Morphology and distribution of antennal sensilla in five species of solitary bees (Hymenoptera, Apoidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 82:101382. [PMID: 39241691 DOI: 10.1016/j.asd.2024.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Solitary bees play a crucial role in ecological systems, contributing to the pollination of crops and wild plants. All females are reproductive, and their habitat requirements include nesting sites, food resources and nesting materials. Although these activities require the ability to detect biotic and abiotic stimuli in the environment, the sensory system of these species is poorly studied. In this study, the antennal sensilla of five solitary bee species belonging to three Apoidea families were investigated using scanning electron microscopy. These included two species of stem-nesting bees, Ceratina cucurbitina (Rossi, 1792) (Apidae) and Osmia scutellaris (Morawitz, 1868) (Megachilidae), and three species of ground-nesting bees, Lasioglossum brevicorne (Schenck, 1870), Lasioglossum leucozonium (Schrank, 1781), and Lasioglossum villosulum (Kirby, 1802) (Halictidae). Thirteen different types of antennal sensilla were identified in females based on their morphological characteristics: sensilla trichodea (subtypes STI, II, III), chaetica (subtypes SchI, II), basiconica (subtypes SBI, II, III, IV), placodea, campaniformia, coeloconica, and ampullacea. Their functional role was discussed and morphology was compared among the species and within the antennal segments in each species. The results provide a baseline for further physiological and behavioural studies to determine the role of antennal sensilla in habitat selection, food search and nesting site selection.
Collapse
Affiliation(s)
- Martina Lento
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Simone Flaminio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Pietro Brandmayr
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
2
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk GS. Cold-Temperature Coding with Bursting and Spiking Based on TRP Channel Dynamics in Drosophila Larva Sensory Neurons. Int J Mol Sci 2023; 24:14638. [PMID: 37834085 PMCID: PMC10572325 DOI: 10.3390/ijms241914638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. Drosophila larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear. We combined computational and electrophysiological methods to address this question. In electrophysiological experiments, we identified two basic cold-evoked patterns of CIII neurons: bursting and spiking. In response to a fast temperature drop to noxious cold, CIII neurons distinctly mark different phases of the stimulus. Bursts frequently occurred along with the fast temperature drop, forming a peak in the spiking rate and likely coding the high rate of the temperature change. Single spikes dominated at a steady temperature and exhibited frequency adaptation following the peak. When temperature decreased slowly to the same value, mainly spiking activity was observed, with bursts occurring sporadically throughout the stimulation. The spike and the burst frequencies positively correlated with the rate of the temperature drop. Using a computational model, we explain the distinction in the occurrence of the two CIII cold-evoked patterns bursting and spiking using the dynamics of a thermoTRP current. A two-parameter activity map (Temperature, constant TRP current conductance) marks parameters that support silent, spiking, and bursting regimes. Projecting on the map the instantaneous TRP conductance, governed by activation and inactivation processes, reflects temperature coding responses as a path across silent, spiking, or bursting domains on the map. The map sheds light on how various parameter sets for TRP kinetics represent various types of cold-evoked responses. Together, our results indicate that bursting detects the high rate of temperature change, whereas tonic spiking could reflect both the rate of change and magnitude of steady cold temperature.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
- Department of Biology, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
3
|
Salzman S, Dahake A, Kandalaft W, Valencia-Montoya WA, Calonje M, Specht CD, Raguso RA. Cone humidity is a strong attractant in an obligate cycad pollination system. Curr Biol 2023; 33:1654-1664.e4. [PMID: 37015222 DOI: 10.1016/j.cub.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Studies of pollination biology often focus on visual and olfactory aspects of attraction, with few studies addressing behavioral responses and morphological adaptation to primary metabolic attributes. As part of an in-depth study of obligate nursery pollination of cycads, we find that Rhopalotria furfuracea weevils show a strong physiological response and behavioral orientation to the cone humidity of the host plant Zamia furfuracea in an equally sensitive manner to their responses to Z. furfuracea-produced cone volatiles. Our results demonstrate that weevils can perceive fine-scale differences in relative humidity (RH) and that individuals exhibit a strong behavioral preference for higher RH in binary choice assays. Host plant Z. furfuracea produces a localized cloud of higher than ambient humidity around both pollen and ovulate cones, and R. furfuracea weevils preferentially land at the zone of maximum humidity on ovulate cones, i.e., the cracks between rows of megasporophylls that provide access to the ovules. Moreover, R. furfuracea weevils exhibit striking antennal morphological traits associated with RH perception, suggesting the importance of humidity sensing in the evolution of this insect lineage. Results from this study suggest that humidity functions in a signal-like fashion in this highly specialized pollination system and help to characterize a key pollination-mediating trait in an ancient plant lineage.
Collapse
Affiliation(s)
- Shayla Salzman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA.
| | - Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - William Kandalaft
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Merivee E, Must A, Nurme K, Di Giulio A, Muzzi M, Williams I, Mänd M. Neural Code for Ambient Heat Detection in Elaterid Beetles. Front Behav Neurosci 2020; 14:1. [PMID: 32116586 PMCID: PMC7016213 DOI: 10.3389/fnbeh.2020.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Environmental thermal conditions play a major role at all levels of biological organization; however, there is little information on noxious high temperature sensation crucial in behavioral thermoregulation and survival of small ectothermic animals such as insects. So far, a capability to unambiguously encode heat has been demonstrated only for the sensory triad of the spike bursting thermo- and two bimodal hygro-thermoreceptor neurons located in the antennal dome-shaped sensilla (DSS) in a carabid beetle. We used extracellular single sensillum recording in the range of 20-45°C to demonstrate that a similar sensory triad in the elaterid Agriotes obscurus also produces high temperature-induced bursty spike trains. Several parameters of the bursts are temperature dependent, allowing the neurons in a certain order to encode different, but partly overlapping ranges of heat up to lethal levels in a graded manner. ISI in a burst is the most useful parameter out of six. Our findings consider spike bursting as a general, fundamental quality of the classical sensory triad of antennal thermo- and hygro-thermoreceptor neurons widespread in many insect groups, being a flexible and reliable mode of coding unfavorably high temperatures. The possible involvement of spike bursting in behavioral thermoregulation of the beetles is discussed. By contrast, the mean firing rate of the neurons in regular and bursty spike trains combined does not carry useful thermal information at the high end of noxious heat.
Collapse
Affiliation(s)
- Enno Merivee
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Anne Must
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Karin Nurme
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | | | - Maurizio Muzzi
- Department of Science, University of Roma Tre, Rome, Italy
| | - Ingrid Williams
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
5
|
Nurme K, Must A, Merivee E. Link between elevated locomotor activity and the spike bursting of antennal thermosensitive neurons in the carabid beetle Pterostichus oblongopunctatus. ACTA ZOOL ACAD SCI H 2019. [DOI: 10.17109/azh.65.suppl.21.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Two novel approaches to study arthropod anatomy by using dualbeam FIB/SEM. Micron 2018; 106:21-26. [DOI: 10.1016/j.micron.2017.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
|
7
|
Nurme K, Merivee E, Must A, Di Giulio A, Muzzi M, Williams I, Mänd M. Bursty spike trains of antennal thermo- and bimodal hygro-thermoreceptor neurons encode noxious heat in elaterid beetles. J Therm Biol 2018; 72:101-117. [PMID: 29496003 DOI: 10.1016/j.jtherbio.2018.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/16/2022]
Abstract
The main purpose of this study was to explain the internal fine structure of potential antennal thermo- and hygroreceptive sensilla, their innervation specifics, and responses of the sensory neurons to thermal and humidity stimuli in an elaterid beetle using focused ion beam scanning electron microscopy and electrophysiology, respectively. Several essential, high temperature induced turning points in the locomotion were determined using automated video tracking. Our results showed that the sensilla under study, morphologically, are identical to the dome-shaped sensilla (DSS) of carabids. A cold-hot neuron and two bimodal hygro-thermoreceptor neurons, the moist-hot and dry-hot neuron, innervate them. Above 25-30 °C, all the three neurons, at different threshold temperatures, switch from regular spiking to temperature dependent spike bursting. The percentage of bursty DSS neurons on the antenna increases with temperature increase suggesting that this parameter of the neurons may encode noxious heat in a graded manner. Thus, we show that besides carabid beetles, elaterids are another large group of insects with this ability. The threshold temperature of the beetles for onset of elevated locomotor activity (OELA) was lower by 11.9 °C compared to that of critical thermal maximum (39.4 °C). Total paralysis occurred at 41.8 °C. The threshold temperatures for spike bursting of the sensory neurons in DSS and OELA of the beetles coincide suggesting that probably the spike bursts are responsible for encoding noxious heat when confronted. In behavioural thermoregulation, spike bursting DSS neurons serve as a fast and firm three-fold early warning system for the beetles to avoid overheating and death.
Collapse
Affiliation(s)
- Karin Nurme
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi Street 1, 51014 Tartu, Estonia.
| | - Enno Merivee
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi Street 1, 51014 Tartu, Estonia
| | - Anne Must
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi Street 1, 51014 Tartu, Estonia
| | - Andrea Di Giulio
- Department of Science, University of Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University of Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy
| | - Ingrid Williams
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi Street 1, 51014 Tartu, Estonia
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi Street 1, 51014 Tartu, Estonia
| |
Collapse
|