1
|
Nakanishi S, Mantani Y, Ohno N, Morishita R, Yokoyama T, Hoshi N. Histological study on regional specificity of the mucosal nerve network in the rat large intestine. J Vet Med Sci 2023; 85:123-134. [PMID: 36517005 PMCID: PMC10017283 DOI: 10.1292/jvms.22-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies and others have revealed detailed characteristics of the mucosal nerve network in the small intestine, but much remains unknown about the corresponding network in the large intestine. We herein investigated regional differences in the expression of neurochemical markers, the nerve network structure, and the cells in contact with nerve fibers by histological analysis using both immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM). Immunohistochemistry revealed that immunopositive structures for protein gene product 9.5, vasoactive intestinal peptide (VIP), calretinin and vesicular acetylcholine transporter were more prevalent in the lamina propria of the ascending colon than the cecum and descending colon (DC). There was no significant difference in the frequency of most neurochemical markers between the cecum and DC, but the frequencies of VIP+ structures were higher in the cecum than in the DC. SBF-SEM analysis showed that the nerve network structure was more developed on the luminal side of the DC than the cecum. The cells that nerve fibers abundantly contacted were subepithelial and lamina propria fibroblast-like cells and macrophages. In addition, nerve fibers in the cecum were in more frequent contact with immune cells such as macrophages and plasma cells than nerve fibers in the DC. Thus, the present histological analysis suggested that the mucosal nerve network in the large intestine possessed both regional universality and various specificities, and revealed the intimate relationship between the nerve network and immune cells, especially in the cecum.
Collapse
Affiliation(s)
- Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Tochigi, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Aichi, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
2
|
Ji H, Lai D, Tou J. Neuroimmune regulation in Hirschsprung's disease associated enterocolitis. Front Immunol 2023; 14:1127375. [PMID: 37138874 PMCID: PMC10149972 DOI: 10.3389/fimmu.2023.1127375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Neuroimmune pathways are important part of the regulation of inflammatory response. Nerve cells regulate the functions of various immune cells through neurotransmitters, and then participate in the inflammatory immune response. Hirschsprung's disease (HD) is a congenital abnormal development of intestinal neurons, and Hirschsprung-associated enterocolitis (HAEC) is a common complication, which seriously affects the quality of life and even endangers the lives of children. Neuroimmune regulation mediates the occurrence and development of enteritis, which is an important mechanism. However, there is a lack of review on the role of Neuroimmune regulation in enterocolitis associated with Hirschsprung's disease. Therefore, this paper summarizes the characteristics of the interaction between intestinal nerve cells and immune cells, reviews the neuroimmune regulation mechanism of Hirschsprung's disease associated enterocolitis (HAEC), and looks forward to the potential clinical application value.
Collapse
|
3
|
You XY, Zhang HY, Han X, Wang F, Zhuang PW, Zhang YJ. Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front Pharmacol 2021; 12:659716. [PMID: 34135754 PMCID: PMC8201607 DOI: 10.3389/fphar.2021.659716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease, irritable bowel syndrome and severe central nervous system injury can lead to intestinal mucosal barrier damage, which can cause endotoxin/enterobacteria translocation to induce infection and is closely related to the progression of metabolic diseases, cardiovascular and cerebrovascular diseases, tumors and other diseases. Hence, repairing the intestinal barrier represents a potential therapeutic target for many diseases. Enteral afferent nerves, efferent nerves and the intrinsic enteric nervous system (ENS) play key roles in regulating intestinal physiological homeostasis and coping with acute stress. Furthermore, innervation actively regulates immunity and induces inherent and adaptive immune responses through complex processes, such as secreting neurotransmitters or hormones and regulating their corresponding receptors. In addition, intestinal microorganisms and their metabolites play a regulatory role in the intestinal mucosal barrier. This paper primarily discusses the interactions between norepinephrine and β-adrenergic receptors, cholinergic anti-inflammatory pathways, nociceptive receptors, complex ENS networks, gut microbes and various immune cells with their secreted cytokines to summarize the key roles in regulating intestinal inflammation and improving mucosal barrier function.
Collapse
Affiliation(s)
- Xin-Yu You
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han-Yu Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fang Wang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Dou D, Liang J, Zhai X, Li G, Wang H, Han L, Lin L, Ren Y, Liu S, Liu C, Guo W, Li J. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin Sci (Lond) 2021; 135:597-611. [PMID: 33564880 DOI: 10.1042/cs20201438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) that is associated with immune dysfunction. Recent studies have indicated that the neurosecretory hormone oxytocin (OXT) has been proven to alleviate experimental colitis. METHODS We investigated the role of OXT/OXT receptor (OXTR) signalling in dendritic cells (DCs) using mice with specific OXTR deletion in CD11c+ cells (OXTRflox/flox×CD11c-cre mice) and a dextran sulfate sodium (DSS)-induced colitis model. RESULTS The level of OXT was abnormal in the serum or colon tissue of DSS-induced colitis mice or the plasma of UC patients. Both bone marrow-derived DCs (BMDCs) and lamina propria DCs (LPDCs) express OXTR. Knocking out OXTR in DCs exacerbated DSS-induced acute and chronic colitis in mice. In contrast, the injection of OXT-pretreated DCs significantly ameliorated colitis. Mechanistically, OXT prevented DC maturation through the phosphatidylinositol 4,5-bisphosphate 3-kinase (Pi3K)/AKT pathway and promoted phagocytosis, adhesion and cytokine modulation in DCs. Furthermore, OXT pre-treated DCs prevent CD4+ T cells differentiation to T helper 1 (Th1) and Th17. CONCLUSIONS Our results suggest that OXT-induced tolerogenic DCs efficiently protect against experimental colitis via Pi3K/AKT pathway. Our work provides evidence that the nervous system participates in the immune regulation of colitis by modulating DCs. Our findings suggest that generating ex vivo DCs pretreated with OXT opens new therapeutic perspectives for the treatment of UC in humans.
Collapse
Affiliation(s)
- Dandan Dou
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jinghui Liang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiangyu Zhai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hongjuan Wang
- Department of Gastroenterology, Second Hospital, Shandong University, Jinan 250000, China
| | - Liying Han
- College of Life Science, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Lin Lin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yifei Ren
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shilian Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Guo
- Department of Colorectal Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Nakanishi S, Mantani Y, Haruta T, Yokoyama T, Hoshi N. Three-dimensional analysis of neural connectivity with cells in rat ileal mucosa by serial block-face scanning electron microscopy. J Vet Med Sci 2020; 82:990-999. [PMID: 32493889 PMCID: PMC7399320 DOI: 10.1292/jvms.20-0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The comprehensive targets of innervation in the intestinal mucosa are unknown, partly because of the diversity of cell types and the complexity of the neural circuits. Herein, we
investigated the comprehensive targets of neural connectivity and analyzed the precise characteristics of their contact structures in the mucosa of rat ileum. We examined target
cells of neural connections and the characteristics of their contact structures by serial block-face scanning electron microscopy at four portions of the rat ileal mucosa: the
apical and basal portions in the villi, and the lateral and basal portions around/in the crypts. Nerve fibers were in contact with several types of fibroblast-like cells (FBLCs),
macrophage-like cells, eosinophils, lymphocyte-like cells, and other types of cells. The nerve fibers almost always ran more inside of lamina propria than subepithelial FBLC, and
thus contacts with epithelial cells were very scarce. The contact structures of the nerve fibers were usually contained synaptic vesicle-like structures, and we classified them
into patterns based on the number of nerve fiber contacting the target cells at one site, the maximum diameter of the contact structures, and the relationship between nerve fibers
and nerve bundles. The contact structures for each type of cells occasionally dug into the cellular bodies of the target cells. We revealed the comprehensive targets of neural
connectivity based on the characteristics of contact structures, and identified FBLCs, immunocompetent cells, and eosinophils as the candidate targets for innervation in the rat
ileal mucosa.
Collapse
Affiliation(s)
- Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tomohiro Haruta
- Bio 3D Promotion Group, Application Management Department, JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
6
|
Muller PA, Matheis F, Mucida D. Gut macrophages: key players in intestinal immunity and tissue physiology. Curr Opin Immunol 2019; 62:54-61. [PMID: 31841704 DOI: 10.1016/j.coi.2019.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The mammalian gastrointestinal tract harbors a large reservoir of tissue macrophages, which, in concert with other immune cells, help to maintain a delicate balance between tolerance to commensal microbes and food antigens, and resistance to potentially harmful microbes or toxins. Beyond their roles in resistance and tolerance, recent studies have uncovered novel roles played by tissue-resident, including intestinal-resident macrophages in organ physiology. Here, we will discuss recent advances in the understanding of the origin, phenotype and function of macrophages residing in the different layers of the intestine during homeostasis and under pathological conditions.
Collapse
Affiliation(s)
- Paul A Muller
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|