1
|
Oláh I, Felföldi B, Benyeda Z, Magyar A, Nagy N, Soós Á, Szőcs E. Life cycle of chicken bursal secretory dendritic cell (BSDC). Poult Sci 2024; 103:103640. [PMID: 38688195 PMCID: PMC11077032 DOI: 10.1016/j.psj.2024.103640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
The transmission electron microscopy revealed a dendritic cell in the medulla of the chicken bursal follicle. This dendritic cell has a classical secretory machinery; therefore, it has been named a bursal secretory dendritic cell (BSDC). The corticomedullary epithelial arch (CMEA) encloses lymphoid-like cells, which can proliferate and after entering the medulla, begin to differentiate to immature, then mature BSDC, which discharges glycoprotein (gp). With the exhaustion of gp production, the BSDC rapidly transforms into a macrophage-like cell (Mal), which is an activated endocytic cell of innate immunity. The Mal drifts through the follicle-associated epithelium (FAE)-supporting cells into the FAE, and via FAE, the Mal is eliminated in the bursal lumen. The infectious bursal disease virus (IBDV) infection accelerates the maturation process of BSDC precursors, which results in acute emptying of CMEA and subsequently, numerous immature BSDC(s) emerge. The IBDV infection stops the gp discharge, and the gp appears in the virus-containing Mal. The Movat pentachrome staining recognizes the gp in the extracellular spaces of the medulla and after infection in the Mal. The BSDC is the primary target of the IBDV. During IBDV infection, a large number of suddenly formed Mal actively migrate into the cortex, initiating cytokine storm and recruiting heterophil granulocytes. During embryogenesis, the vimentin-positive, possibly embryonic dendritic cells provide a microenvironment for carbohydrate switch. Around hatching, these embryonic, temporary dendritic cells get the Fc receptor, which bind maternal IgY. The posthatched forms of BSDC(s) gradually replace the embryonic ones and bind their own IgY.
Collapse
Affiliation(s)
- Imre Oláh
- Department of Anatomy, Histology and Embryology Semmelweis University 1094, Budapest, Hungary.
| | | | | | - Attila Magyar
- Department of Anatomy, Histology and Embryology Semmelweis University 1094, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology Semmelweis University 1094, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology Semmelweis University 1094, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology Semmelweis University 1094, Budapest, Hungary
| |
Collapse
|
2
|
Härtle S, Sutton K, Vervelde L, Dalgaard TS. Delineation of chicken immune markers in the era of omics and multicolor flow cytometry. Front Vet Sci 2024; 11:1385400. [PMID: 38846783 PMCID: PMC11156169 DOI: 10.3389/fvets.2024.1385400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Multiparameter flow cytometry is a routine method in immunological studies incorporated in biomedical, veterinary, agricultural, and wildlife research and routinely used in veterinary clinical laboratories. Its use in the diagnostics of poultry diseases is still limited, but due to the continuous expansion of reagents and cost reductions, this may change in the near future. Although the structure and function of the avian immune system show commonalities with mammals, at the molecular level, there is often low homology across species. The cross-reactivity of mammalian immunological reagents is therefore low, but nevertheless, the list of reagents to study chicken immune cells is increasing. Recent improvement in multicolor antibody panels for chicken cells has resulted in more detailed analysis by flow cytometry and has allowed the discovery of novel leukocyte cell subpopulations. In this article, we present an overview of the reagents and guidance needed to perform multicolor flow cytometry using chicken samples and common pitfalls to avoid.
Collapse
Affiliation(s)
- Sonja Härtle
- Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Kate Sutton
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- Division of Immunology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Tina S. Dalgaard
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
3
|
Sugimoto K, Nishikawa T, Sugiyama T. CD41 + extracellular vesicles produced by avian thrombocytes contain microRNAs. Genes Cells 2023; 28:915-928. [PMID: 37927115 DOI: 10.1111/gtc.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Avians have thrombocytes in their blood circulation rather than mammalian platelets. However, many details of thrombocyte characteristics have not been determined. Here, chicken thrombocytes were isolated, and extracellular vesicle (EV) production was investigated. The thrombocyte-specific markers cd41 and cd61 were expressed in the yolk sac at 24 h. According to the embryonic developmental stage, the cd41-expressing tissues changed from the yolk sac to the bone marrow and spleen. Accordingly, the bone marrow and spleen were the main tissues producing thrombocytes in adult chickens. Avian thrombocytes were separated from adult spleen cells through a combination of discontinuous density gradient centrifugation, phagocytic cell removal, and fluorescence-activated cell sorting. Isolated thrombocytes produced CD41+ EVs (CD41+ EVs), and the CD41+ EVs also expressed CD9. Microarray analysis revealed that CD41+ EVs contain many microRNAs. Macrophage lines (RAW264.7) phagocytosed CD41+ EVs, and their phagocytosis and migration activity were suppressed. Microarray analysis also revealed that EVs altered gene expression in macrophages. These data indicated that the CD41+ EV was a carrier of microRNAs produced from thrombocytes and affected the cell characteristics of the received cells. Therefore, the CD41+ EVs of avians worked as a communication tool.
Collapse
Affiliation(s)
- Kenkichi Sugimoto
- Faculty of Graduate School of Science and Technology, Department of Cell Science, Niigata University, Niigata, Japan
| | - Takamasa Nishikawa
- Faculty of Graduate School of Science and Technology, Department of Cell Science, Niigata University, Niigata, Japan
| | - Toshie Sugiyama
- Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
5
|
Jarrosson L, Dalle S, Costechareyre C, Tang Y, Grimont M, Plaschka M, Lacourrège M, Teinturier R, Le Bouar M, Maucort‐Boulch D, Eberhardt A, Castellani V, Caramel J, Delloye‐Bourgeois C. An in vivo avian model of human melanoma to perform rapid and robust preclinical studies. EMBO Mol Med 2023; 15:e16629. [PMID: 36692026 PMCID: PMC9994476 DOI: 10.15252/emmm.202216629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/25/2023] Open
Abstract
Metastatic melanoma patients carrying a BRAFV600 mutation can be treated with a combination of BRAF and MEK inhibitors (BRAFi/MEKi), but innate and acquired resistance invariably occurs. Predicting patient response to targeted therapies is crucial to guide clinical decision. We describe here the development of a highly efficient patient-derived xenograft model adapted to patient melanoma biopsies, using the avian embryo as a host (AVI-PDXTM ). In this in vivo paradigm, we depict a fast and reproducible tumor engraftment of patient samples within the embryonic skin, preserving key molecular and phenotypic features. We show that sensitivity and resistance to BRAFi/MEKi can be reliably modeled in these AVI-PDXTM , as well as synergies with other drugs. We further provide proof-of-concept that the AVI-PDXTM models the diversity of responses of melanoma patients to BRAFi/MEKi, within days, hence positioning it as a valuable tool for the design of personalized medicine assays and for the evaluation of novel combination strategies.
Collapse
Affiliation(s)
| | - Stéphane Dalle
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of LyonLyonFrance
- Centre Hospitalier Lyon SudHospices Civils de LyonPierre BéniteFrance
| | | | - Yaqi Tang
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of LyonLyonFrance
| | - Maxime Grimont
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of LyonLyonFrance
| | - Maud Plaschka
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of LyonLyonFrance
| | | | | | - Myrtille Le Bouar
- Centre Hospitalier Lyon SudHospices Civils de LyonPierre BéniteFrance
| | | | - Anaïs Eberhardt
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of LyonLyonFrance
- Centre Hospitalier Lyon SudHospices Civils de LyonPierre BéniteFrance
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene InstituteLyonFrance
| | - Julie Caramel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of LyonLyonFrance
| | - Céline Delloye‐Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene InstituteLyonFrance
| |
Collapse
|
6
|
Oláh I, Felföldi B, Benyeda Z, Kovács T, Nagy N, Magyar A. The bursal secretory dendritic cell (BSDC) and the enigmatic chB6 + macrophage-like cell (Mal). Poult Sci 2022; 101:101727. [PMID: 35172235 PMCID: PMC8851255 DOI: 10.1016/j.psj.2022.101727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
The bursal secretory dendritic cell (BSDC) was discovered more than 40 yr ago. It is a highly polarized, granulated cell, locating in the medulla of bursal follicle. The cytoplasmic granules either discharge or fuse together forming large, irregular-shaped, dense bodies. Formation of the dense bodies could be the first sign of BSDC transformation to macrophage-like cell (Mal) which is the result of terminal maturation of BSDC. The BSDC is non-phagocytic, unlike Mal. The discharged substance may be attached to the cell membrane (membrane-bound form) and after detaching, appears as a flocculated substance in the extracellular space of medulla. Movat pentachrome staining shows, that this substance is a glycoprotein (gp), which may be contributed to the microenvironment of the medulla. Medullary lymphocytes are floating in the gp. Precursors of the BSDC locate in the corticomedullary epithelial arches, which operate under the effect of Notch/Serrate signaling. The Notch signaling determines the fate of lymphoblast-like precursor cells and inhibits the appearance of immunoglobulin heavy chain. In the arches, the precursor cells proliferate and entering the medulla differentiate. The dense bodies pack the virus particles, which prevents the granular discharge, resulting in disappearance of extracellular gp, but gp emerges inside the virus containing Mal. In infected birds, the Mal contains either apoptotic cells or virus particles. If vaccination or infectious bursal disease virus (IBDV) infection use up the BSDC precursors, the recovery of follicle is critical.
Collapse
Affiliation(s)
- Imre Oláh
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary.
| | | | | | - Tamás Kovács
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary
| | - Attila Magyar
- Department of Anatomy, Histology and Embryology Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
7
|
Fejszák N, Kocsis K, Halasy V, Szőcs E, Soós Á, Roche DVL, Härtle S, Nagy N. Characterization and functional properties of a novel monoclonal antibody which identifies a B cell subpopulation in bursa of Fabricius. Poult Sci 2022; 101:101711. [PMID: 35151935 PMCID: PMC8844905 DOI: 10.1016/j.psj.2022.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/08/2022] Open
Abstract
The bursa of Fabricius (BF) plays a central role in the development of B lymphocytes in birds. During embryonic development the BF primordium is colonized by myeloid and lymphoid prebursal stem cells to form the follicle buds, which ultimately develop into lymphoid follicles with a central medullary and an outer cortical region. Lympho-myeloid differentiation within the medulla is fundamental to normal B cell development. In contrast, the complexity of the cellular composition of the follicular cortex and its role in B cell differentiation has only recently begun to be studied. As an effort to characterize the different bursal cells we have produced a large panel of monoclonal antibodies (mAbs) by immunizing mice with a BF cell suspension of guinea fowl (Numida meleagris). One of these antibodies (clone: 7H3) was found to recognize a 80 kDa cell surface antigen expressed first in the yolk sac blood island of 2-day-old guinea fowl and chicken embryos, and later detected in the embryonic circulation and primary lymphoid organs. Double immunofluorescence revealed that chB6+ (Bu-1+) B cells of embryonic BF co-express the 7H3 antigen. 7H3 immunoreactivity of the bursal follicles gradually diminished after hatching and only a subpopulation of cortical B cells expressed the 7H3 antigen. In addition, in post-hatched birds 7H3 mAb recognizes all T lymphocytes of the thymus, peripheral lymphoid organs and blood. Embryonic BF injected with the 7H3 mAb showed a near complete block of lymphoid follicle formation In conclusion, 7H3 mAb labels a new differentiation antigen specific for avian hematopoietic cells, which migrate through the embryonic mesenchyme, colonize the developing BF lymphoid follicles, and differentiate into a subpopulation of cortical B cells. The staining pattern of the 7H3 mAb and the correlation of expression with cell migration suggest that the antigen will serve as valuable immunological marker for studying the ontogeny of avian B cells.
Collapse
|
8
|
Garcia P, Wang Y, Viallet J, Macek Jilkova Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021; 12:791081. [PMID: 34868080 PMCID: PMC8640176 DOI: 10.3389/fimmu.2021.791081] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the immune system is associated with many pathologies, including cardiovascular diseases, diabetes, and cancer. To date, the most commonly used models in biomedical research are rodents, and despite the various advantages they offer, their use also raises numerous drawbacks. Recently, another in vivo model, the chicken embryo and its chorioallantoic membrane, has re-emerged for various applications. This model has many benefits compared to other classical models, as it is cost-effective, time-efficient, and easier to use. In this review, we explain how the chicken embryo can be used as a model for immune-based studies, as it gradually develops an embryonic immune system, yet which is functionally similar to humans'. We mainly aim to describe the avian immune system, highlighting the differences and similarities with the human immune system, including the repertoire of lymphoid tissues, immune cells, and other key features. We also describe the general in ovo immune ontogeny. In conclusion, we expect that this review will help future studies better tailor their use of the chicken embryo model for testing specific experimental hypotheses or performing preclinical testing.
Collapse
Affiliation(s)
- Paul Garcia
- Université Grenoble Alpes, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, Centre Hospitalo-Universitaire (USA) Grenoble Alpes, La Tronche, France
| |
Collapse
|
9
|
Dora D, Ferenczi S, Stavely R, Toth VE, Varga ZV, Kovacs T, Bodi I, Hotta R, Kovacs KJ, Goldstein AM, Nagy N. Evidence of a Myenteric Plexus Barrier and Its Macrophage-Dependent Degradation During Murine Colitis: Implications in Enteric Neuroinflammation. Cell Mol Gastroenterol Hepatol 2021; 12:1617-1641. [PMID: 34246810 PMCID: PMC8551790 DOI: 10.1016/j.jcmgh.2021.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Szilamer Ferenczi
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viktoria E. Toth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zoltan V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildiko Bodi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Krisztina J. Kovacs
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Allan M. Goldstein, MD, Massachusetts General Hospital, 55 Fruit Street, WRN 1151, Boston, Massachusetts 02114. fax: (617) 726-2167.
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary,Correspondence Address correspondence to: Nandor Nagy, PhD, Semmelweis University, Tuzolto st. 58, Budapest 1094, Hungary. fax: (36) 1-2153064.
| |
Collapse
|
10
|
Nagy N, Busalt F, Halasy V, Kohn M, Schmieder S, Fejszak N, Kaspers B, Härtle S. In and Out of the Bursa-The Role of CXCR4 in Chicken B Cell Development. Front Immunol 2020; 11:1468. [PMID: 32765509 PMCID: PMC7381227 DOI: 10.3389/fimmu.2020.01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
In contrast to mammals, early B cell differentiation and diversification of the antibody repertoire in chickens do not take place in the bone marrow but in a specialized gut associated lymphoid tissue (GALT), the bursa of Fabricius. During embryonic development, B cell precursors migrate to the bursa anlage, where they proliferate and diversify their B cell receptor repertoire. Around hatch these diversified B cells start to emigrate from the bursa of Fabricius and populate peripheral lymphoid organs, but very little is known how the migratory processes are regulated. As CXCL12 (syn. SDF-1) and CXCR4 were shown to be essential for the control of B cell migration during the development of lymphoid tissues in mammals, we analyzed expression and function of this chemokine/chemokine-receptor pair in the chicken bursa. We found a strong variation of mRNA abundance of CXCL12 and CXCR4 in different stages of bursa development, with high abundance of CXCL12 mRNA in the bursa anlage at embryonic day 10 (ED10). In situ hybridization demonstrated disseminated CXCL12 expression in the early bursa anlage, which condensed in the developing follicles and was mainly restricted to the follicle cortex post-hatch. Flow cytometric analysis detected CXCR4 protein already on early B cell stages, increasing during bursal development. Post-hatch, a subpopulation with the hallmarks of emigrating B cells became detectable, which had lower CXCR4 expression, suggesting that downregulation of CXCR4 is necessary to leave the CXCL12-high bursal environment. In vivo blockade of CXCR4 using AMD3100 at the time of B cell precursor immigration strongly inhibited follicle development, demonstrating that CXCL12 attracts pre-bursal B cells into the bursal anlage. Altogether, we show that CXCL12 and its receptor CXCR4 are important for both populating the bursa with B cells and emigration of mature B cells into the periphery post hatch, and that CXCR4 function in primary B cell organs is conserved between mammals and birds.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Florian Busalt
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Halasy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marina Kohn
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Schmieder
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nora Fejszak
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bernd Kaspers
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
12
|
Dora D, Arciero E, Hotta R, Barad C, Bhave S, Kovacs T, Balic A, Goldstein AM, Nagy N. Intraganglionic macrophages: a new population of cells in the enteric ganglia. J Anat 2018; 233:401-410. [PMID: 30022489 DOI: 10.1111/joa.12863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
The enteric nervous system shares embryological, morphological, neurochemical, and functional features with the central nervous system. In addition to neurons and glia, the CNS includes a third component, microglia, which are functionally and immunophenotypically similar to macrophages, but a similar cell type has not previously been identified in enteric ganglia. In this study we identify a population of macrophages in the enteric ganglia, intermingling with the neurons and glia. These intraganglionic macrophages (IMs) are highly ramified and express the hematopoietic marker CD45, major histocompatibility complex (MHC) class II antigen, and chB6, a marker specific for B cells and microglia in avians. These IMs do not express antigens typically associated with T cells or dendritic cells. The CD45+ /ChB6+ /MHCII+ signature supports a hematopoietic origin and this was confirmed using intestinal chimeras in GFP-transgenic chick embryos. The presence of green fluorescent protein positive (GFP+) /CD45+ cells in the intestinal graft ENS confirms that IMs residing within enteric ganglia have a hematopoietic origin. IMs are also found in the ganglia of CSF1RGFP chicken and CX3CR1GFP mice. Based on the expression pattern and location of IMs in avians and rodents, we conclude that they represent a novel non-neural crest-derived microglia-like cell population within the enteric ganglia.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Csilla Barad
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Effects of early feeding and dietary interventions on development of lymphoid organs and immune competence in neonatal chickens: A review. Vet Immunol Immunopathol 2018; 201:1-11. [DOI: 10.1016/j.vetimm.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
|