1
|
Knyazeva A, Dyachuk V. Neural crest and sons: role of neural crest cells and Schwann cell precursors in development and gland embryogenesis. Front Cell Dev Biol 2024; 12:1406199. [PMID: 38989061 PMCID: PMC11233730 DOI: 10.3389/fcell.2024.1406199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
In this review, we consider the multipotency of neural crest cells (NCCs), Schwann cell precursors (SCPs), and their role in embryogenesis base on genetic tracing and knock out model animals and single cell transcriptomic analysis. In particular, we summarize and analyze data on the contribution of NCCs and SCPs to the gland development and functions.
Collapse
|
2
|
Sbaffone M, Jaffrain-Rea ML, Cappabianca L, Carbonara F, Gianno F, Feola T, Ruggieri M, Zelli V, Maccarone R, Guadagni S, Clementi M, Arcella A, Esposito V, Carozza G, Martelli I, Farina AR, Mackay AR. A Study of Alternative TrkA Splicing Identifies TrkAIII as a Novel Potentially Targetable Participant in PitNET Progression. BIOLOGY 2024; 13:171. [PMID: 38534441 DOI: 10.3390/biology13030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are generally benign but comprise an aggressive, invasive, therapy-resistant, metastatic subset, underpinning a need for novel therapeutic targets. PitNETs exhibit low mutation rates but are associated with conditions linked to alternative splicing, an alternative oncogene pathway activation mechanism. PitNETs express the neurotrophin receptor TrkA, which exhibits oncogenic alternative TrkAIII splicing in other neuroendocrine tumors. We, therefore, assessed whether TrkAIII splicing represents a potential oncogenic participant in PitNETs. TrkAIII splicing was RT-PCR assessed in 53 PitNETs and TrkA isoform(s) expression and activation were assessed by confocal immunofluorescence. TrkAIII splicing was also compared to HIF1α, HIF2α, SF3B1, SRSF2, U2AF1, and JCPyV large T antigen mRNA expression, Xbp1 splicing, and SF3B1 mutation. TrkAIII splicing was detected in all invasive and most non-invasive PitNETs and was significantly elevated in invasive cases. In PitNET lineages, TrkAIII splicing was significantly elevated in invasive PIT1 PitNETs and high in invasive and non-invasive SF1 and TPIT lineages. Immunoreactivity consistent with TrkAIII activation characterized PitNET expressing TrkAIII mRNA, and invasive Pit1 PitNETs exhibited elevated HIF2α expression. TrkAIII splicing did not associate with SF3B1 mutations, altered SF3B1, SRSF2, and U2AF1 or JCPyV large T antigen expression, or Xbp1 splicing. Therefore, TrkAIII splicing is common in PitNETs, is elevated in invasive, especially PIT1 tumors, can result in intracellular TrkAIII activation, and may involve hypoxia. The data support a role for TrkAIII splicing in PitNET pathogenesis and progression and identify TrkAIII as a novel potential target in refractory PitNETs.
Collapse
Affiliation(s)
- Maddalena Sbaffone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy
| | - Lucia Cappabianca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Francesca Carbonara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Francesca Gianno
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Tiziana Feola
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy
- Department of Experimental Medicine, La Sapienza University of Rome, 00185 Rome, Italy
| | - Marianna Ruggieri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Stefano Guadagni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Marco Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Antonietta Arcella
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy
| | - Vincenzo Esposito
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy
- Department of Neurology and Psychiatry, La Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Ilaria Martelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Antonietta Rosella Farina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Andrew Reay Mackay
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Kato Y, Yoshida S, Kato T. Missing pieces of the pituitary puzzle: participation of extra-adenohypophyseal placode-lineage cells in the adult pituitary gland. Cell Tissue Res 2023; 394:487-496. [PMID: 37650920 DOI: 10.1007/s00441-023-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
The pituitary gland is a major endocrine tissue composing of two distinct entities, the adenohypophysis (anterior pituitary, cranial placode origin) and the neurohypophysis (posterior pituitary, neural ectoderm origin), and plays important roles in maintaining vital homeostasis. This tissue is maintained by a slow, consistent cell-renewal system of adult stem/progenitor cells. Recent accumulating evidence shows that neural crest-, head mesenchyme-, and endoderm lineage cells invade during pituitary development and contribute to the maintenance of the adult pituitary gland. Based on these novel observations, this article discusses whether these lineage cells are involved in pituitary organogenesis, maintenance, regeneration, dysplasia, or tumors.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
4
|
Gu J, Wei B, Gao B, Duan R, Sheng L, Zheng D, Bao Y, Xie F. Histopathological and Immunohistochemical Features of Small to Big Satellite Nevus Uncover the Nevogenesis of Large/Giant Congenital Melanocytic Nevus. J Immunol Res 2022; 2022:9024548. [PMID: 36523350 PMCID: PMC9745446 DOI: 10.1155/2022/9024548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/11/2022] [Indexed: 09/10/2024] Open
Abstract
The nevogenesis of large/giant congenital melanocytic nevus (lgCMN) is a complex biological process including several integral prenatal stages. Limited by ethical concerns, the debate of whether lgCMN develops from the epidermis to the dermis or in the opposite direction remains controversial. With the present study of the accompanying satellite nevi, we tend to support that lgCMN develops from epidermis to dermis. The satellite nevi were divided into 3 groups: big (diameter >10 mm), medium (>5 mm but ≤10 mm), and small (≤5 mm). Hematoxylin and eosin and immunohistochemical staining (SOX10, Ki67, and p16) were performed to compare the nevocyte infiltration depth as well as the positively stained rates among these satellite nevi. Compared to big satellite nevi, less deeply the nevocytes infiltrated the dermis, as well as more cells expressed SOX10 and Ki67 in the epidermis and fewer cells expressed p16 in the dermis of small satellite nevi. Additionally, two specimens were obtained from each of 4 patients who underwent serial resections of lgCMN at an average interval of 1.75 years to examine the histopathological changes. In the present study, satellite nevi of different sizes represent different stages of lgCMN from early to late, deepening our comprehension of the sequential stages of lgCMN nevogenesis. Initially, abnormal nevocytes seeded, proliferated, and spread along the epidermis. At rete ridges that protrude from the papillary dermis within the epidermis, some nevocytes formed nests and gradually penetrated into the dermis. Eventually, the nevocytes infiltrated the dermis and entered a homeostatic state. This study provides new evidence supporting the theory of epidermal-to-dermal nevogenesis in lgCMN.
Collapse
Affiliation(s)
- Jieyu Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Boxuan Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bowen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ran Duan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lingling Sheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yongyang Bao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
5
|
Horiguchi K, Fujiwara K, Tsukada T, Nakakura T, Yoshida S, Hasegawa R, Takigami S. Differentiation of stem progenitor CD9/SOX2-positive cells is promoted with increased prolactin-producing and endothelial cells in the pituitary. J Reprod Dev 2022; 68:278-286. [PMID: 35691820 PMCID: PMC9334323 DOI: 10.1262/jrd.2022-047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor cells in the adenohypophysis, comprising the anterior and intermediate lobes (AL and IL, respectively). The cells
are located in the marginal cell layer (MCL) facing Rathke’s cleft (primary niche) and the parenchyma of the AL (secondary niche). We previously demonstrated in vitro that
the tetraspanin superfamily CD9 and SOX2 double-positive (CD9/SOX2-positive) cells in the IL-side MCL migrate to the AL side and differentiate into hormone-producing and endothelial cells in
the AL parenchyma. Here, we performed in vivo studies to evaluate the role of IL-side CD9/SOX2-positive cells in pregnancy, lactation, and treatment with diethylstilbestrol
(DES; an estrogen analog) when an increased population of prolactin (PRL) cells was observed in the AL of the rat pituitary. The proportions of CD9/SOX2-, CD9/Ki67-, and PRL/TUNEL-positive
cells decreased in the primary and secondary niches during pregnancy and DES treatment. In contrast, the number of CD9/PRL-positive cells increased in the AL-side MCL and AL parenchyma
during pregnancy and during DES treatment. The proportion of PRL/Ki67-positive cells increased in the AL-side MCL and AL parenchyma in response to DES treatment. Next, we isolated
CD9-positive cells from the IL-side MCL using an anti-CD9 antibody. During cell culture, the cells formed free-floating three-dimensional clusters (pituispheres). Furthermore, CD9-positive
cells in the pituisphere differentiated into PRL cells, and their differentiation potential was promoted by DES. These findings suggest that CD9/SOX2-positive cells in the IL-side MCL may
act as adult stem cells in the AL parenchyma that supply PRL cells under the influence of estrogen.
Collapse
Affiliation(s)
- Kotaro Horiguchi
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Ken Fujiwara
- Department of Biological Science, Faculty of Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Rumi Hasegawa
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| | - Shu Takigami
- Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Tokyo 181-8612, Japan
| |
Collapse
|
6
|
SASAKI K, HIGUCHI M. Characterization of pituitary stem/progenitor cell populations in spontaneous dwarf rats. J Vet Med Sci 2022; 84:680-688. [PMID: 35387959 PMCID: PMC9177403 DOI: 10.1292/jvms.22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous dwarf rat (SDR) is a primary experimental animal model for the study of pituitary dwarfism with a point mutation in the Gh gene encoding growth hormone (GH). In previous studies, SDR has been reported to be associated with the GH deficiency as well as combined hormone deficiencies, the cause of which is unknown. In this study, we focused on the characteristics of pituitary stem/progenitor cell populations, which are a source of hormone-producing cells, in SDR. Immunofluorescence and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses confirmed the defects in GH-producing cells, the decreased number of prolactin- and thyroid-stimulating hormone-producing cells, and the increased number of adrenocorticotropic hormone- and luteinizing hormone-producing cells. Additionally, qRT-PCR analysis showed increased Prop1 (an embryonic stem/progenitor cell marker) expression and decreased S100b (a putative adult stem/progenitor cell marker) expression in SDRs. In the pituitary stem/progenitor cell niche, the marginal cell layer, the proportion of SOX2/PROP1-double positive cells was higher in adult SDRs than in adult Sprague Dawley (SD) rats but that of SOX2/S100β-double positive cells was much lower. Furthermore, the number of SOX2/PROP1-double positive cells in SD rats significantly decreased with growth; however, the decrease was smaller in SDRs. In contrast, the number of SOX2/S100β-double positive cells in SD rats significantly increased with growth; however, they were few in SDRs. Thus, S100β-positive pituitary stem/progenitor cells failed to settle in pituitary dwarfism with the Gh gene mutation, leading to multiple hypopituitarism including GH deficiency.
Collapse
Affiliation(s)
- Kenta SASAKI
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Masashi HIGUCHI
- Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
7
|
Kato Y, Yoshida S, Kato T. New insights into the role and origin of pituitary S100β-positive cells. Cell Tissue Res 2021; 386:227-237. [PMID: 34550453 DOI: 10.1007/s00441-021-03523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
In the anterior pituitary, S100β protein (S100β) has been assumed to be a marker of folliculo-stellate cells, which are one of the non-hormone-producing cells existing in the parenchyma of the adult anterior lobe and are composed of subpopulations with various functions. However, recent accumulating studies on S100β-positive cells, including non-folliculo-stellate cells lining the marginal cell layer (MCL), have shown the novel aspect that most S100β-positive cells in the MCL and parenchyma of the adult anterior lobe are positive for sex determining region Y-box 2 (SOX2), a marker of pituitary stem/progenitor cells. From the viewpoint of SOX2-positive cells, the majority of these cells in the MCL and in the parenchyma are positive for S100β, suggesting that S100β plays a role in the large population of stem/progenitor cells in the anterior lobe of the adult pituitary. Reportedly, S100β/SOX2-double positive cells are able to differentiate into hormone-producing cells and various types of non-hormone-producing cells. Intriguingly, it has been demonstrated that extra-pituitary lineage cells invade the pituitary gland during prenatal pituitary organogenesis. Among them, two S100β-positive populations have been identified: one is SOX2-positive population which invades at the late embryonic period through the pituitary stalk and another is a SOX2-negative population that invades at the middle embryonic period through Atwell's recess. These two populations are likely the substantive origin of S100β-positive cells in the postnatal anterior pituitary, while S100β-positive cells emerging from oral ectoderm-derived cells remain unclear.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
8
|
Sakata K, Fujimori K, Komaki S, Furuta T, Sugita Y, Ashida K, Nomura M, Morioka M. Pituitary Gangliocytoma Producing TSH and TRH: A Review of "Gangliocytomas of the Sellar Region". J Clin Endocrinol Metab 2020; 105:5876003. [PMID: 32706866 PMCID: PMC7451506 DOI: 10.1210/clinem/dgaa474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Pituitary gangliocytomas (GCs) are rare neuronal tumors that present with endocrinological disorders, such as acromegaly, amenorrhea-galactorrhea syndrome, and Cushing's disease. Most pituitary GCs coexist with pituitary adenomas pathologically and are diagnosed as mixed gangliocytoma-adenomas. Herein, we report a case of 45-year-old man who presented with the syndrome of inappropriate secretion of thyroid-stimulating hormone (SITSH) and discuss the pathogenesis of pituitary GCs. METHODS Pituitary magnetic resonance imaging showed an 8-mm homogeneous and poorly enhanced mass inside the pituitary gland. Endoscopic transsphenoidal surgery was performed under a preoperative diagnosis of thyrotroph adenoma. However, the tumor was finally diagnosed as gangliocytoma without an adenomatous component. The tumor was further analyzed via immunohistochemistry and electron microscopy. Additionally, we searched MEDLINE and PubMed for previously published cases of isolated pituitary GCs and analyzed the reported clinicopathological findings. RESULTS The patient showed complete clinical and endocrinological recovery after an operation. The tumor was positive for thyrotropin (TSH), TSH-releasing hormone (TRH), Pit-1, GATA-2, and most neuronal markers. Electron microscopy demonstrated the presence of intracytoplasmic secretory granules and neuronal processes. Co-secreting hypothalamic and pituitary hormone inside the tumor indicated autocrine/paracrine endocrinological stimulation. CONCLUSION Herein, we report a case of SITSH caused by an isolated pituitary gangliocytoma, expressing both TSH and TRH, which, to our best knowledge, is the first reported case of such a condition. The multidirectional differentiation and multihormonal endocrine characteristics of these tumors indicate that they are a member of neuroendocrine neoplasms, further supporting that they are derived from neural crest cells.
Collapse
Affiliation(s)
- Kiyohiko Sakata
- Department of Neurosurgery, Kurume University, School of Medicine, Fukuoka, Japan
- Correspondence and Reprint Requests: Kiyohiko Sakata, MD, Department of Neurosurgery, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan. E-mail: .
| | - Kana Fujimori
- Department of Neurosurgery, Kurume University, School of Medicine, Fukuoka, Japan
| | - Satoru Komaki
- Department of Neurosurgery, Kurume University, School of Medicine, Fukuoka, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University, School of Medicine, Fukuoka, Japan
| | - Yasuo Sugita
- Department of Neuropathology, Neurology Center, St. Mary’s Hospital, Fukuoka, Japan
| | - Kenji Ashida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University, School of Medicine, Fukuoka, Japan
| |
Collapse
|
9
|
Chen Q, Leshkowitz D, Blechman J, Levkowitz G. Single-Cell Molecular and Cellular Architecture of the Mouse Neurohypophysis. eNeuro 2020; 7:ENEURO.0345-19.2019. [PMID: 31915267 PMCID: PMC6984808 DOI: 10.1523/eneuro.0345-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 12/05/2022] Open
Abstract
The neurohypophysis (NH), located at the posterior lobe of the pituitary, is a major neuroendocrine tissue, which mediates osmotic balance, blood pressure, reproduction, and lactation by means of releasing the neurohormones oxytocin (OXT) and arginine-vasopressin (AVP) from the brain into the peripheral blood circulation. The major cellular components of the NH are hypothalamic axonal termini, fenestrated endothelia and pituicytes, the resident astroglia. However, despite the physiological importance of the NH, the exact molecular signature defining neurohypophyseal cell types and in particular the pituicytes, remains unclear. Using single-cell RNA sequencing (scRNA-Seq), we captured seven distinct cell types in the NH and intermediate lobe (IL) of adult male mouse. We revealed novel pituicyte markers showing higher specificity than previously reported. Bioinformatics analysis demonstrated that pituicyte is an astrocytic cell type whose transcriptome resembles that of tanycyte. Single molecule in situ hybridization revealed spatial organization of the major cell types implying intercellular communications. We present a comprehensive molecular and cellular characterization of neurohypophyseal cell types serving as a valuable resource for further functional research.
Collapse
Affiliation(s)
- Qiyu Chen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|