1
|
Hu Y, Chen H, Yang M, Xu J, Liu J, He Q, Xu X, Ji Z, Yang Y, Yan M, Zhang H. Hepatocyte growth factor facilitates the repair of spinal cord injuries by driving the chemotactic migration of mesenchymal stem cells through the β-catenin/TCF4/Nedd9 signaling pathway. Stem Cells 2024; 42:957-975. [PMID: 39269318 DOI: 10.1093/stmcls/sxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Transplanted mesenchymal stem cells (MSCs) can significantly aid in repairing spinal cord injuries (SCIs) by migrating to and settling at the injury site. However, this process is typically inefficient, as only a small fraction of MSCs successfully reach the target lesion area. During SCI, the increased expression and secretion of hepatocyte growth factor (HGF) act as a chemoattractant that guides MSC migration. Nonetheless, the precise mechanisms by which HGF influences MSC migration are not fully understood. This study focused on unraveling the molecular pathways that drive MSC migration toward the SCI site in response to HGF. It was found that HGF can activate β-catenin signaling in MSCs by either phosphorylating LRP6, suppressing GSK3β phosphorylation through the AKT and ERK1/2 pathways, or enhancing the expression and nuclear translocation of TCF4. This activation leads to elevated Nedd9 expression, which promotes focal adhesion formation and F-actin polymerization, facilitating chemotactic migration. Transplanting MSCs during peak HGF expression in injured tissues substantially improves nerve regeneration, reduces scarring, and enhances hind limb mobility. Additionally, prolonging HGF release can further boost MSC migration and engraftment, thereby amplifying regenerative outcomes. However, inhibiting HGF/Met or interfering with β-catenin or Nedd9 signaling significantly impairs MSC engraftment, obstructing tissue repair and functional recovery. Together, these findings provide a theoretical basis and practical strategy for MSC transplantation therapy in SCI, highlighting the specific molecular mechanisms by which HGF regulates β-catenin signaling in MSCs, ultimately triggering their chemotactic migration.
Collapse
Affiliation(s)
- Ya'nan Hu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Huanhuan Chen
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
- Clinical Medicine Research Center, The Suqian Clinical College of Xuzhou Medical University, Suqian 223800, People's Republic of China
| | - Min Yang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Jianwei Xu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Jinming Liu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Qisheng He
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaojing Xu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Zhongqing Ji
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Ying Yang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Mengwen Yan
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
2
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
3
|
Zhao Q, Liu X, Yu C, Xiao Y. Macrophages and Bone Marrow-Derived Mesenchymal Stem Cells Work in Concert to Promote Fracture Healing: A Brief Review. DNA Cell Biol 2022; 41:276-284. [PMID: 35196145 DOI: 10.1089/dna.2021.0869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC)-based and macrophage-based cell therapy are regarded as promising strategies to promote fracture healing because of incredible osteogenic potential of BMSCs and typical immunomodulatory function of macrophages. Apart from their respective key roles, accumulative evidence has also demonstrated the importance of cross talk between these two cell types in fracture healing process. This review takes a deep insight into the recent research progress of the synergic performance of BMSCs and macrophages by discussing not only the cells own functions but also the relevant impact factors and mechanisms (ambient microenvironment stimulus, miRNAs, etc). The aim of this review is to provide some valuable cues and technique support for the macrophage- and BMSC-related research, which will be helpful to propel BMSC/macrophage-based combined cell therapy for bone fracture treatment.
Collapse
Affiliation(s)
- Qing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xinran Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Chuanying Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Tao R, Qu Z, Zhang K, Chen J, Wang X, Deng Y. Substance P modulates BMSCs migration for tissue repair through NK-1R/CXCR4/p-Akt signal activation. Mol Biol Rep 2022; 49:2227-2236. [PMID: 35034285 DOI: 10.1007/s11033-021-07044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The migration of bone marrow-derived mesenchymal stem cells (BMSCs) to the wound site played an important role in tissue repair. Substance P (SP) has been studied and reported to be involved in tissue repair by promoting the growth of endothelial cells and the migration of BMSCs. However, the complicated process and the molecular mechanisms were not fully understood. Thus, we aimed to investigate the effect of SP-induced BMSCs migration on tissue repair and its possible mechanism. METHODS AND RESULTS Western blot and q-PCR assay revealed that SP could induce the BMSCs migration through overexpression of CXCR4 and upregulation of Akt phosphorylation. And the upregulation was related to the activation of neurokinin-1 receptor (NK-1R). Besides, we found that the increased phosphorylation Akt caused by SP could be canceled by the inhibition of CXCR4 both in vitro and in vivo. Furthermore, a skin-injury animal model was established and used to observe the tissue repair process. Results showed that SP could accelerate wound closure, gain more granulation tissue accumulation, and more collagen deposition through the promotion of angiogenesis and induction of the BMSCs migration to the wound site. And these effects could be impaired by inhibition of CXCR4 and p-Akt. CONCLUSIONS Our results suggested that SP promoted tissue repair through BMSCs migration via upregulation of CXCR4 and p-Akt. The expression of CXCR4 and p-Akt were regulated by NK-1R activation. These findings add more evidence in understanding the mechanisms of SP-induced BMSCs migration and highlight the potential for clinical implementation of SP in tissue repair.
Collapse
Affiliation(s)
- Ran Tao
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Zhan Qu
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke Zhang
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jie Chen
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xinyu Wang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, 410008, Hunan Province, People's Republic of China
| | - Youming Deng
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Zhang J, Huang J, Gu Y, Xue M, Qian F, Wang B, Yang W, Yu H, Wang Q, Guo X, Ding X, Wang J, Jin M, Zhang Y. Inflammation-induced inhibition of chaperone-mediated autophagy maintains the immunosuppressive function of murine mesenchymal stromal cells. Cell Mol Immunol 2021; 18:1476-1488. [PMID: 31900460 PMCID: PMC8167126 DOI: 10.1038/s41423-019-0345-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy has been implicated in modulating the therapeutic function of mesenchymal stromal cells (MSCs). However, the biological function of chaperone-mediated autophagy (CMA) in MSCs remains elusive. Here, we found that CMA was inhibited in MSCs in response to the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). In addition, suppression of CMA by knocking down the CMA-related lysosomal receptor lysosomal-associated membrane protein 2 (LAMP-2A) in MSCs significantly enhanced the immunosuppressive effect of MSCs on T cell proliferation, and as expected, LAMP-2A overexpression in MSCs exerted the opposite effect on T cell proliferation. This effect of CMA on the immunosuppressive function of MSCs was attributed to its negative regulation of the expression of chemokine C-X-C motif ligand 10 (CXCL10), which recruits inflammatory cells, especially T cells, to MSCs, and inducible nitric oxide synthase (iNOS), which leads to the subsequent inhibition of T cell proliferation via nitric oxide (NO). Mechanistically, CMA inhibition dramatically promoted IFN-γ plus TNF-α-induced activation of NF-κB and STAT1, leading to the enhanced expression of CXCL10 and iNOS in MSCs. Furthermore, we found that IFN-γ plus TNF-α-induced AKT activation contributed to CMA inhibition in MSCs. More interestingly, CMA-deficient MSCs exhibited improved therapeutic efficacy in inflammatory liver injury. Taken together, our findings established CMA inhibition as a critical contributor to the immunosuppressive function of MSCs induced by inflammatory cytokines and highlighted a previously unknown function of CMA.
Collapse
Affiliation(s)
- Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiefang Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Guo
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Xinyuan Ding
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jina Wang
- Department of Urology and Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yanyun Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Li L, Zhang L, Zhang T, Qi X, Cheng G, Xia L. Serum Chemokine CXCL7 as a Potential Novel Biomarker for Obstructive Colorectal Cancer. Front Oncol 2021; 10:599363. [PMID: 33643903 PMCID: PMC7902867 DOI: 10.3389/fonc.2020.599363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
Due to the lack of typical symptoms and signs and sensitive indicators for early diagnosis of obstructive colorectal cancer (OCRC), it is critically needed to find new novel biomarkers to ameliorate the management of OCRC patients. In this study, 472 blood samples were collected and measured by enzyme-linked immunosorbent assay (ELISA) to investigate the value of serum chemokine ligand 7 (CXCL7) in diagnosis and prognosis for OCRC patients. The median concentrations of CXCL7 in non-OCRC and OCRC were both higher than that in controls (both P < 0.05). Importantly, the median serum concentration of CXCL7 in OCRC was also higher than that in non-OCRC (P < 0.001). In all OCRC patients, the area under the curve (AUC) of CXCL7 was 0.918 with a sensitivity of 86.54% and a specificity of 81.87%. Similarly, the AUC of CXCL7 was 0.684 when the diagnostic test was performed between OCRC and CRC patients. CXCL7 had a higher AUC than other markers. The concentration of CXCL7 in 40 postoperative OCRC patients was higher than normal people and lower than preoperative patients. The median survival time was 62.00 months and the 5-year overall survival (OS) rate of the patients was 51.80% in all 155 OCRC patients. Multivariate Cox proportional hazard regression model analysis showed that high CXCL7 in serum was independent factors associated with poor OS of OCRC patients (HR = 2.216, P = 0.032). These results demonstrate that serum CXCL7 may be a potential biomarker both in diagnosis and prognosis for OCRC patients.
Collapse
Affiliation(s)
- Longhai Li
- Department of Science and Education, The People's Hospital of Bozhou, Bozhou, China
| | - Lihua Zhang
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ting Zhang
- Department of Pathology Cancer Research Center, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Gang Cheng
- Department of Oncology, The People's Hospital of Bozhou, Bozhou, China
| | - Lingxia Xia
- Department of Science and Education, The People's Hospital of Bozhou, Bozhou, China
| |
Collapse
|
7
|
Wang X, Yang Y, Wang N, Wu X, Xu J, Zhou Y, Zhao X, He Z. Mesenchymal stem cell carriers enhance antitumor efficacy induced by oncolytic reovirus in acute myeloid leukemia. Int Immunopharmacol 2021; 94:107437. [PMID: 33571747 DOI: 10.1016/j.intimp.2021.107437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the therapeutic efficacy is modest, and most commonly manifests as relapse from remission. Thus, improving long-term AML survival is a crucial clinical challenge. In recent years, oncolytic virotherapy has provided an alternative approach for AML treatment. The use of oncolytic reoviruses has been explored in more than 30 clinical trials for safety and feasibility issues. However, like other oncolytic viruses, neutralizing antibodies (NAbs) reduce therapeutic efficacy. To tackle this problem, human umbilical cord mesenchymal stem cells (hUC-MSCs) were used to deliver reovirus using in vitro and in vivo models. Human UC-MSCs were successfully loaded with reovirus, without impairing biological function.We also observed in vitro protective effects of hUC-MSCs on reovirus in the presence of NAbs. In the immunocompromised AML mouse model, hUC-MSCs effectively carried reoviruses to tumor lesions and significantly prolonged the survival of AML xenografts in mice in the presence of a high titer anti-reovirus antibody (p = 0.001). However, reovirus-induced activation of AKT, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and NF-κB signaling led to the maintenance of intrinsic migratory properties and secretion of pro-inflammatory cytokines from hUC-MSCs, particularly CXCL10. In immuno-competent AML mice, MSCs carrying reovirus triggered immune responses, and eventually inhibited tumor growth. Therefore, these results suggest that MSCs as carriers of oncolytic reoviruses can enhance the antitumor efficacy of virotherapy.
Collapse
Affiliation(s)
- Xianyao Wang
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Yichen Yang
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China
| | - Nianxue Wang
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China
| | - Xijun Wu
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China; Department of Pharmacology, Guizhou Medical University, Guiyang 550025, China
| | - Yanhua Zhou
- Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China
| | - Xing Zhao
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Center for Tissue Engineering and Stem Cell Research , Guizhou Medical University, Guiyang 550004, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China.
| | - Zhixu He
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guiyang 550004, China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Zhang Y, Hu Y, Wang W, Guo Z, Yang F, Cai X, Xiong L. Current Progress in the Endogenous Repair of Intervertebral Disk Degeneration Based on Progenitor Cells. Front Bioeng Biotechnol 2021; 8:629088. [PMID: 33553131 PMCID: PMC7862573 DOI: 10.3389/fbioe.2020.629088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is one of the most common musculoskeletal disease. Current clinical treatment paradigms for IVD degeneration cannot completely restore the structural and biomechanical functions of the IVD. Bio-therapeutic techniques focused on progenitor/stem cells, especially IVD progenitor cells, provide promising options for the treatment of IVD degeneration. Endogenous repair is an important self-repair mechanism in IVD that can allow the IVD to maintain a long-term homeostasis. The progenitor cells within IVD play a significant role in IVD endogenous repair. Improving the adverse microenvironment in degenerative IVD and promoting progenitor cell migration might be important strategies for implementation of the modulation of endogenous repair of IVD. Here, we not only reviewed the research status of treatment of degenerative IVD based on IVD progenitor cells, but also emphasized the concept of endogenous repair of IVD and discussed the potential new research direction of IVD endogenous repair.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wentian Wang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zijun Guo
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhu X, Chen T, Yang H, Lv K. Lactate induced up-regulation of KLHDC8A (Kelch domain-containing 8A) contributes to the proliferation, migration and apoptosis of human glioma cells. J Cell Mol Med 2020; 24:11691-11702. [PMID: 32851798 PMCID: PMC7579713 DOI: 10.1111/jcmm.15780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Glioma is a common type of malignant brain tumour with high mortality and relapse rate. However, the molecular mechanisms of glioma development have not been clarified. Differentially expressed genes in normal brain tissues and glioma tissues, low-grade and high-grade gliomas were screened out with GEO database analysis. We found that KLHDC8A (Kelch domain-containing 8A) expression level was significantly increased in high-grade glioma tissues and that high KLHDC8A expression was closely related with poor prognosis. Function assays indicated that KLHDC8A knockdown inhibited proliferation, migration and invasion, blocked the cell cycle and promoted apoptosis in glioma cells. Mechanistically, KLHDC8A regulated various functions in glioma by directly mediating Bcl2, BAX, p21, CDK2, MMP2 transcription and ERK and P38 MAPK activation. KLHDC8A overexpression enhances glioma tumorgenesis such as cell proliferation, migration and invasion. The ERK and P38 MAPK which activated by KLHDC8A overexpression could be reversed by U0126 and SB203580, respectively. Meanwhile, stimulation of lactate which produced by glycolysis is responsible for induction of KLHDC8A expression. Collectively, we demonstrated that KLHDC8A plays an important role in tumorgenesis of glioma, suggesting that it is a promising prognostic marker and a potential therapy target for the treatment of glioma.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, China.,Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, China
| | - Tianbing Chen
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, China.,Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, China
| | - Hui Yang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, China.,Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, China.,Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
10
|
Li M, Wei L, Zhou W, He Z, Ran S, Liang J. miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis. Stem Cell Res Ther 2020; 11:317. [PMID: 32711573 PMCID: PMC7382064 DOI: 10.1186/s13287-020-01833-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Background Upon migrating to the injured sites, bone marrow mesenchymal stem cells (BMSCs) play critical roles in the repair of bone lesion caused by chronic apical periodontitis. Emerging evidences have shown that Enterococcus faecalis is always associated with apical periodontitis, especially refractory apical periodontitis. But the mechanism underlying how Enterococcus faecalis affects the migration of BMSCs remains unclear. Methods The effects of Enterococcus faecalis supernatants on the migration of BMSCs were determined by transwell migration assays. miRNA sequencing was performed to detect the significantly differentially expressed miRNAs of BMSCs. Proteomics analysis was used to detect the protein expression alterations of BMSCs. Luciferase report assays were deployed to verify the targets of miRNA. Western blot analysis was performed to examine the expressions of matrix metalloproteinases-3, matrix metalloproteinases-9, Forkhead Box Protein J1 (FOXJ1), and nuclear factor kappa B (NFκB). The activations of NFκB were detected by luciferase assays with NFκBluc reporter. Results We found that Enterococcus faecalis supernatants could promote the migration of BMSCs. The upregulation of miR-200a-3p in this process contributed to BMSC migration through downregulating its target Forkhead Box Protein J1. Moreover, FOXJ1/ NFκB axis was found to regulate matrix metalloproteinases (MMPs) in this process. Conclusions These results above suggest that miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyan He
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingping Liang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
11
|
Abstract
Mesenchymal stem cells (MSCs) represent a promising source of cell-based therapies for treatment of a wide variety of injuries and diseases. Their tropism and migration to the damaged sites, which are elicited by cytokines secreted from tissues around pathology, are the prerequisite for tissue repair and regeneration. Better understanding of the elicited-migration of MSCs and discovering conditions that elevate their migration ability, will help to increase their homing to pathologies and improve therapeutic efficacy. It is increasingly recognized that microRNAs are important regulators of cell migration. Here we summarize current understanding of the microRNA-regulated migration of MSCs.
Collapse
|
12
|
Wang X, Wang H, Lu J, Feng Z, Liu Z, Song H, Wang H, Zhou Y, Xu J. Erythropoietin-Modified Mesenchymal Stem Cells Enhance Anti-fibrosis Efficacy in Mouse Liver Fibrosis Model. Tissue Eng Regen Med 2020; 17:683-693. [PMID: 32621283 PMCID: PMC7333789 DOI: 10.1007/s13770-020-00276-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Mesenchymal stem cell (MSC)-based cell transplantation is an effective means of treating chronic liver injury, fibrosis and end-stage liver disease. However, extensive studies have found that only a small number of transplanted cells migrate to the site of injury or lesion, and repair efficacy is very limited.
Methods: Bone marrow-derived MSCs (BM-MSCs) were generated that overexpressed the erythropoietin (EPO) gene using a lentivirus. Cell Counting Kit-8 was used to detect the viability of BM-MSCs after overexpressing EPO. Cell migration and apoptosis were verified using Boyden chamber and flow cytometry, respectively. Finally, the anti-fibrosis efficacy of EPO-MSCs was evaluated in vivo using immunohistochemical analysis. Results: EPO overexpression promoted cell viability and migration of BM-MSCs without inducing apoptosis, and EPO-MSC treatment significantly alleviated liver fibrosis in a carbon tetrachloride (CCl4) induced mouse liver fibrosis model. Conclusion: EPO-MSCs enhance anti-fibrotic efficacy, with higher cell viability and stronger migration ability compared with treatment with BM-MSCs only. These findings support improving the efficiency of MSCs transplantation as a potential therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Xianyao Wang
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China.,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China.,Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Huizhen Wang
- Department of Stomatology, Nanyang Medical College, Nanyang, 473000, China
| | - Junhou Lu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Zhanhui Feng
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Zhongshan Liu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, 523000, China
| | - Heng Wang
- Department of Pharmacology, Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Yanhua Zhou
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China. .,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China.
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China. .,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China. .,Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
13
|
Deng SZ, Lai MF, Li YP, Xu CH, Zhang HR, Kuang JG. Human marrow stromal cells secrete microRNA-375-containing exosomes to regulate glioma progression. Cancer Gene Ther 2019; 27:203-215. [DOI: 10.1038/s41417-019-0079-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
|
14
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
15
|
The Novel miRNA N-72 Regulates EGF-Induced Migration of Human Amnion Mesenchymal Stem Cells by Targeting MMP2. Int J Mol Sci 2018; 19:ijms19051363. [PMID: 29734654 PMCID: PMC5983717 DOI: 10.3390/ijms19051363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Human amnion mesenchymal stem cells (hAMSCs) are promising sources of stem cells in regenerative medicine. The migration stimulated by cytokines is critical for mesenchymal stem cells (MSCs)-based cytotherapy, while the regulatory mechanisms of EGF (epidermal growth factor)-induced hAMSC migration are largely unclear. Here, a novel miRNA N-72 (GenBank accession number: MH269369) has been discovered, and its function on EGF-induced migration in hAMSCs was investigated. High-purity hAMSCs were isolated and cultured in vitro, which were characterized by flow cytometry and trilineage differentiation. The N-72 located on chromosome three was conserved, and pri-N-72 owned the ability to form a stem-loop secondary structure, which was predicated by bioinformatic programs. The expression of mature N-72 was verified in several human cells including hAMSC by real-time PCR. In EGF-stimulated hAMSC, N-72 showed a significant reduction in a PI3K and p38 MAPK-dependent manner, and N-72 mimics transfection-inhibited EGF-induced migration, which was verified by scratch assay and transwell assay. Further, the predicated target gene MMP2 was proved to be a direct target of N-72 via luciferase reporter assay, real-time PCR, and Western blotting. The results that MMP2 silencing repressed hAMSC migration suggested MMP2 as a functional downstream target of N-72. In summary, we have discovered the novel N-72, and it was crucial for EGF-induced migration by targeting MMP2 in hAMSCs.
Collapse
|