1
|
Zhou L, Wu Z, Li Y, Lin S, Xiao L, Wang H, Wang G. Brief Pup Separation in Lactation Confers Stress Resistance with Increased Prolactin and Adult Hippocampal Neurogenesis in Postpartum C57BL/6J Dams. Neurochem Res 2024; 49:3143-3155. [PMID: 39235577 DOI: 10.1007/s11064-024-04231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Prolactin (PRL) assumes a pivotal role during the postpartum phase, particularly within the hippocampus-a region densely populated with receptors for stress hormones, where stress significantly inhibits adult hippocampal neurogenesis (AHN). The reduction in neurogenesis is implicated in the pathogenesis of anxiety and depression. Mothers are at an increased risk of developing depression when exposed to chronic stress. Therefore, it is imperative to investigate the potential role of PRL in depression-like behaviors stemming from prolonged postpartum stress, and to explore any underlying mechanisms. Despite pup separation (PS) being a natural postpartum care practice, the impact of various PS methods on lactating dams remains uncertain. Lactating C57BL/6J mice, from postpartum day (PPD) 1 to PPD 21, underwent no PS (NPS), brief PS (15 min per day, PS15), or long PS (180 min per day, PS180), followed by 21 days of chronic restraint stress (CRS). Behavioral tests were conducted, and measurements included serum PRL concentration, PRL-R expression, and AHN in the hippocampus. Dams with CRS exhibited cognitive decline, depressive- and anxiety-like behaviors, and reduced PRL secretion, correlating with lower levels of AHN. PS15 dams displayed lower levels of depressive- and anxiety-like behaviors and cognitive decline compared to NPS and PS180 dams. Significantly, PS15 dams exhibited higher levels of AHN, PRL-R expression in the hippocampus, and serum PRL concentration. This study collectively reveals reduced serum PRL and AHN in dams with cognitive decline and depressive- and anxiety-like behaviors after CRS. Brief PS confers resistance to behavioral deficits after CRS, increasing serum PRL concentration and reversing AHN decrease in dams.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Zuotian Wu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430060, China
| | - Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Shanshan Lin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China.
| |
Collapse
|
2
|
Li Y, Zhou L, Xiao L, Wang H, Wang G. Wheel Running During Pregnancy Alleviates Anxiety-and Depression-Like Behaviors During the Postpartum Period in Mice: The Roles of NLRP3 Neuroinflammasome Activation, Prolactin, and the Prolactin Receptor in the Hippocampus. Neurochem Res 2024; 49:2615-2635. [PMID: 38904910 DOI: 10.1007/s11064-024-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Despite the increase in the prevalence of postpartum depression among maternal disorder, its treatment outcomes remain suboptimal. Studies have shown that exercise can reduce postpartum depressive episodes in the mother, but the effects of exercise during pregnancy on maternal behavior and the potential mechanisms involved remain poorly understood. From the second day of pregnancy to the day of birth, dams exercised for 1 h a day by running on a controlled wheel. The maternal behaviors of the dams were assessed on postpartum day 2 to postpartum day 8. Chronic restraint stress was applied from postpartum day 2 to day 12. Blood was collected on postpartum days 3 and 8, then subjected to ELISA to determine the serum concentration of prolactin. The weight of each dam and the food intake were recorded. Anxiety- and depression-like behavioral tests were conducted, and hippocampal neuroinflammation and prolactin receptor levels were measured. The dams exhibited elevated levels of anxiety and depression, decreased serum prolactin levels, decreased prolactin receptor expression, and activation of NLRP3-mediated neuroinflammation in the hippocampus following the induction of postpartum chronic restraint stress, which were reversed with controlled wheel running during pregnancy. Overall, the findings of this study revealed that the preventive effects of exercise during pregnancy on postpartum anxiety-and depression-like behaviors were accompanied by increased serum prolactin levels, hippocampal prolactin receptor expression and hippocampal NLRP3-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
| |
Collapse
|
3
|
Zhu T, Li W. The regulation of prolactin secretion and its targeting function of teleost. Gen Comp Endocrinol 2024; 354:114530. [PMID: 38657738 DOI: 10.1016/j.ygcen.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Prolactin is involved in regulating various physiological activities of vertebrates and is one of the most momentous pituitary hormones. However, not enough attention is currently paid to prolactin, especially in teleost. This paper aims to gather, organize, and analyze recent studies on the regulation and functions of prolactin. By comparing with other animal groups, it highlights the significant role of prolactin in fish reproduction, immunity, growth, and osmotic pressure regulation, as well as the upstream and downstream factors that may be involved in the regulation of prolactin functions were introduced to provide a theoretical basis for the in-depth study and potential practical application of prolactin.
Collapse
Affiliation(s)
- Tiansheng Zhu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 China.
| |
Collapse
|
4
|
Stojkovic M, Jovanovic M, Jakovljevic V, Zivkovic V, Djordjevic N, Kocovic A, Nikolic M, Stojanovic A, Minic N, Ignjatovic V, Vukomanovic V, Nastic D, Zdravkovic N, Radmanovic O, Djordjic M, Babic S, Radmanovic B. Protective Effect of Hyperprolactinemia on Oxidative Stress in Patients with Psychotic Disorder on Atypical Antipsychotics Risperidone and Paliperidone: A Cross-Sectional Study. Biomedicines 2024; 12:1418. [PMID: 39061992 PMCID: PMC11275159 DOI: 10.3390/biomedicines12071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
Several studies indicate the impact of antipsychotics like risperidone and paliperidone on oxidative stress parameters, yet data remain inconsistent. We investigated the link between these medications, hyperprolactinemia (HPRL), and oxidative stress. This study was conducted at the Psychiatry Clinic, University Clinical Center, Kragujevac, between November 2022 and August 2023. Inclusion criteria comprised diagnosed psychotic disorders from the ICD-10-based F20-F29 spectrum and clinical stability on risperidone/paliperidone for ≥12 weeks with no recent dose adjustments. Exclusion criteria included pregnancy, breastfeeding, relevant medical conditions, or co-therapy with prolactin-secreting drugs. Data encompassed drug choice, administration method, therapy duration, and daily dose. Prolactin (PRL) levels, oxidative stress parameters (TBARS, H2O2, O2-, NO2-), and antioxidant system (CAT, GSH, SOD) were assessed. Of 155 subjects, women exhibited significantly higher PRL levels (p < 0.001) and symptomatic HPRL (p < 0.001). Drug choice and regimen significantly influenced TBARS (p < 0.001), NO2- (p < 0.001), O2- (p = 0.002), CAT (p = 0.04), and GSH (p < 0.001) levels. NO2- levels were affected by drug dose (p = 0.038). TBARS (p < 0.001), O2- (p < 0.001), and SOD (p = 0.022) inversely correlated with PRL levels, suggesting PRL's protective role against oxidative stress. The female sex association with higher PRL levels implies additional factors influencing PRL's antioxidant role. Antipsychotic choice and dosage impact PRL and oxidative stress markers, necessitating further exploration.
Collapse
Affiliation(s)
- Milena Stojkovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (N.M.); (B.R.)
- Psychiatric Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Mirjana Jovanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (N.M.); (B.R.)
- Psychiatric Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (M.N.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (M.N.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pharmacology, 1st Moscow State Medical, University IM Sechenov, 119991 Moscow, Russia
| | - Natasa Djordjevic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.J.); (V.Z.); (M.N.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Aleksandra Stojanovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natasa Minic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (N.M.); (B.R.)
- Psychiatric Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Vesna Ignjatovic
- Department of Nuclear Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.I.); (V.V.)
| | - Vladimir Vukomanovic
- Department of Nuclear Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (V.I.); (V.V.)
| | - Danijela Nastic
- Institution for Accommodating Adults “Male Pcelice”, 34000 Kragujevac, Serbia;
| | - Natasa Zdravkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Clinic of Gastroenterohepatology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Olivera Radmanovic
- Clinic for Rheumatology and Allergology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Milan Djordjic
- Department of Communication Skills, Ethics, and Psychology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sasa Babic
- Psychiatric Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Branimir Radmanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (N.M.); (B.R.)
- Psychiatric Clinic, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
5
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Rodríguez-Chávez V, Flores-Soto E, Molina-Salinas G, Martínez-Razo LD, Montaño LM, Cerbón M. Prolactin reduces the kainic acid-induced increase in intracellular Ca 2+ concentration, leading to neuroprotection of hippocampal neurons. Neurosci Lett 2023; 810:137344. [PMID: 37315731 DOI: 10.1016/j.neulet.2023.137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
The aim of this study was to determine the effect of prolactin (PRL) on intracellular calcium (Ca2+) concentration and its neuroprotective role in a model of kainic acid (KA) excitotoxicity in primary cultures of hippocampal neurons. Cell viability and intracellular Ca2+ concentrations were determined by MTT and Fura-2 assays, respectively, either after induction by KA as an agonist or after treatment with NBQX antagonist alone or in combination with PRL administration. Expression of ionotropic glutamatergic receptors (iGluRs) subunits in neuronal cells was determined by RT-qPCR. Dose-response treatments with KA or glutamate (Glu), the latter used as endogenous agonist control, induced a significant increase in neuronal intracellular Ca2+ concentration followed by a significant decrease in hippocampal neuronal viability. Administration of PRL induced a significant increase in neuronal viability after treatment with KA. Furthermore, administration of PRL decreased intracellular Ca2+ concentrations induced by KA treatment. Independent administration of the AMPAR-KAR antagonist reversed cell death and reduced intracellular Ca2+ concentration in a similar manner as PRL. Additionally, mRNA expression of AMPAR, KAR and NMDAR subtypes were detected in hippocampal neurons; however, no significant changes in iGluRs subunit expression were observed due to excitotoxicity or PRL treatment. The results suggest that PRL inhibits the increase in intracellular Ca2+ concentration induced by KA, leading to neuroprotection.
Collapse
Affiliation(s)
- V Rodríguez-Chávez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico
| | - E Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX 04360, Mexico
| | - G Molina-Salinas
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico
| | - L D Martínez-Razo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico
| | - L M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX 04360, Mexico
| | - M Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX 04510, Mexico.
| |
Collapse
|
7
|
Reda H. Neurologic Complications of Endocrine Disorders. Continuum (Minneap Minn) 2023; 29:887-902. [PMID: 37341334 DOI: 10.1212/con.0000000000001262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE This article provides an overview of the neurologic complications of the most prevalent endocrine disorders in adults with an emphasis on relevant neurologic symptoms, signs, and laboratory and neuroimaging findings. LATEST DEVELOPMENTS Although the mechanisms of many of the neurologic complications discussed here remain unclear, our understanding of the impacts of diabetes and hypothyroidism on the nervous system and muscle, including complications of rapid correction of chronic hyperglycemia, has advanced in recent years. Recent large studies have not demonstrated a convincing association between subclinical or overt hypothyroidism and cognitive decline. ESSENTIAL POINTS Neurologists must become familiar with the neurologic complications of endocrine disorders not only because they are common and treatable (and often reversible) but also because they may be iatrogenic, as is the case with adrenal insufficiency in the setting of long-term corticosteroid therapy.
Collapse
|
8
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Santiago JA, Potashkin JA. Biological and Clinical Implications of Sex-Specific Differences in Alzheimer's Disease. Handb Exp Pharmacol 2023; 282:181-197. [PMID: 37460661 DOI: 10.1007/164_2023_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Mounting evidence indicates that the female sex is a risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. Decades of research suggest that sex-specific differences in genetics, environmental factors, hormones, comorbidities, and brain structure and function may contribute to AD development. However, although significant progress has been made in uncovering specific genetic factors and biological pathways, the precise mechanisms underlying sex-biased differences are not fully characterized. Here, we review several lines of evidence, including epidemiological, clinical, and molecular studies addressing sex differences in AD. In addition, we discuss the challenges and future directions in advancing personalized treatments for AD.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
10
|
Santiago JA, Quinn JP, Potashkin JA. Sex-specific transcriptional rewiring in the brain of Alzheimer’s disease patients. Front Aging Neurosci 2022; 14:1009368. [PMID: 36389068 PMCID: PMC9659968 DOI: 10.3389/fnagi.2022.1009368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Sex-specific differences may contribute to Alzheimer’s disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20–30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Collapse
Affiliation(s)
| | | | - Judith A. Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Judith A. Potashkin,
| |
Collapse
|
11
|
Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ, García-Barrado MJ, Carretero J. Highlights regarding prolactin in the dentate gyrus and hippocampus. VITAMINS AND HORMONES 2022; 118:479-505. [PMID: 35180938 DOI: 10.1016/bs.vh.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prolactin (PRL) is a pituitary hormone that has been typically related to lactogenesis in mammals. However, it has been described over 300 roles in the organism of vertebrae and its relationship with the central nervous system (CNS) is yet to be clarified. Mainly secreted by the pituitary gland, the source of prolactin in the CNS remains unclear, where some experiments suggest active transport via an unknown carrier or, on the contrary, PRL being synthesized on the brain. So far, it seems to be involved with neurogenesis, neuroprotection, maternal behavior and cognitive processes in the hippocampus and dentate gyrus, among other regions.
Collapse
Affiliation(s)
- Marta Carretero-Hernández
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain.
| | - Leonardo Catalano-Iniesta
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Enrique J Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - María José García-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| |
Collapse
|
12
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
13
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
14
|
Rodriguez-Chavez V, Moran J, Molina-Salinas G, Zepeda Ruiz WA, Rodriguez MC, Picazo O, Cerbon M. Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin. Neuroscience 2021; 461:180-193. [PMID: 33647379 DOI: 10.1016/j.neuroscience.2021.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. Glutamatergic receptors include ionotropic and metabotropic categories. The first allows the passage of ions through the postsynaptic membrane, while the metabotropic subtype activates signaling cascades through second messengers. It is well known that an excess of extracellular Glu concentration induces overstimulation of ionotropic glutamatergic receptors (iGluRs), causing the excitotoxicity phenomenon that leads to neuronal damage and cell death. Excitotoxicity plays a crucial role in different brain pathologies such as brain strokes, epilepsy and neurodegenerative disorders. However, until now, there are no effective neuroprotective compounds to prevent or rescue neurons from excitotoxicity. Thus, the continuous elucidation of the molecular mechanisms underlying excitotoxicity in order to prevent damage or neuronal death is necessary. Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.
Collapse
Affiliation(s)
- V Rodriguez-Chavez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - J Moran
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - W A Zepeda Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - M C Rodriguez
- Instituto Nacional de Salud Pública, CISEI, Cuernavaca, Morelos 62100, Mexico
| | - O Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340 Ciudad de México, Mexico.
| | - M Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| |
Collapse
|
15
|
Anagnostou I, Muñoz-Mayorga D, Morales T. Prolactin neuroprotective action against excitotoxic insult in the hippocampus of male mice. Peptides 2021; 135:170425. [PMID: 33053420 DOI: 10.1016/j.peptides.2020.170425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 01/25/2023]
Abstract
Prolactin (PRL) is known to exert neuroprotective effects against excitotoxic damage in the hippocampus of female rats, both in vitro and in vivo. It is still unknown whether this effect can be seen in the male hippocampus and intracellular signaling mediating such action. To assess this, adult male CD-1 mice were subjected to excitotoxic damage with kainic acid (KA; i.c.v.), after a) no manipulation (control group), b) treatment with saline, and c) treatment with PRL (8 μg of PRL/100 μl of saline s.c.). Treatments consisted of one daily injection of the mentioned dosage for seven consecutive days until the day of the excitotoxic lesion. Neurodegeneration (Fluoro-Jade C), neuronal survival (NeuN) and astrogliosis (GFAP) markers were identified with immunohistochemistry in the CA1, CA3 and CA4 areas of the dorsal hippocampus, as well as PRL-related protein levels by Western blot in the whole hippocampus 48 h after excitotoxicity. Anatomical measurements revealed a preferential protective effect of PRL against excitotoxic damage in the CA3 hippocampal subfield, with lower levels of cell death and neurodegeneration, compared to controls. In CA4, the results were not conclusive, and no damage was observed in CA1 after KA administration. PRL treatment provoked an upregulation of active Akt, a well-known cell survival pathway, after KA administration. PRL also caused downregulation of active MAPK, independently of the excitotoxic damage. The present results indicate a neuroprotective role for PRL preferentially located in the CA3 area of the hippocampus of male mice, possibly mediated by Akt-related survival mechanisms.
Collapse
Affiliation(s)
- Ilektra Anagnostou
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Daniel Muñoz-Mayorga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| |
Collapse
|
16
|
Abstract
The investigation of hormones, brain function and behavior over the past 50 years has played a major role in elucidating how the brain and body communicate reciprocally via hormones and other mediators and how this impacts brain and body health both positively and negatively. This is illustrated here for the hippocampus, a uniquely sensitive and vulnerable brain region, study of which as a hormone target has provided a gateway into the rest of the brain. Hormone actions on the brain and hormones generated within the brain are now recognized to include not only steroid hormones but also metabolic hormones and chemical signals from bone and muscle. Moreover, steroid hormones, and some metabolic hormones, and their receptors, are generated by the brain for specific functions that synergize with effects of those circulating hormones. Hormone actions in hippocampus have revealed its capacity, and that of other brain regions, for adaptive plasticity, loss of which needs external intervention in, for example, mood disorders. Early life experiences as well as in utero and transgenerational effects are now appreciated for their lasting effects at the level of gene expression affecting the capacity for adaptive plasticity. Moreover sex differences are recognized as affecting the whole brain via both genetic and epigenetic mechanisms. The demonstrated plasticity of a healthy brain gives hope that interventions throughout the life course can ameliorate negative effects by reactivating that plasticity and the underlying epigenetic activity to produce compensatory changes in the brain with more positive consequences for the body.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| |
Collapse
|
17
|
Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One 2019; 14:e0220378. [PMID: 31348800 PMCID: PMC6660079 DOI: 10.1371/journal.pone.0220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
The hippocampus is a well-known target of thyroid hormone (TH; e.g., 3,5,3’-triiodothyronine—T3) and glucocorticoid (GC; e.g., corticosterone—CORT) action. Despite evidence that TH and GC play critical roles in neural development and function, few studies have identified genes and patterns of gene regulation influenced by the interaction of these hormones at a genome-wide scale. In this study we investigated gene regulation by T3, CORT, and T3 + CORT in the mouse hippocampus-derived cell line HT-22. We treated cells with T3, CORT, or T3 + CORT for 4 hr before cell harvest and RNA isolation for microarray analysis. We identified 9 genes regulated by T3, 432 genes by CORT, and 412 genes by T3 + CORT. Among the 432 CORT-regulated genes, there were 203 genes that exhibited an altered CORT response in the presence of T3, suggesting that T3 plays a significant role in modulating CORT-regulated genes. We also found 80 genes synergistically induced, and 73 genes synergistically repressed by T3 + CORT treatment. We performed in silico analysis using publicly available mouse neuronal chromatin immunoprecipitation-sequencing datasets and identified a considerable number of synergistically regulated genes with TH receptor and GC receptor peaks mapping within 1 kb of chromatin marks indicative of hormone-responsive enhancer regions. Functional annotation clustering of synergistically regulated genes reveal the relevance of proteasomal-dependent degradation, neuroprotective effect of growth hormones, and neuroinflammatory responses as key pathways to how TH and GC may coordinately influence learning and memory. Taken together, our transcriptome data represents a promising exploratory dataset for further study of common molecular mechanisms behind synergistic TH and GC gene regulation, and identify specific genes and their role in processes mediated by cross-talk between the thyroid and stress axes in a mammalian hippocampal model system.
Collapse
|
18
|
Flores‐Vivaldo YM, Camacho‐Abrego I, Picazo O, Flores G. Pregnancies alters spine number in cortical and subcortical limbic brain regions of old rats. Synapse 2019; 73:e22100. [DOI: 10.1002/syn.22100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yaredit Margarita Flores‐Vivaldo
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional Mexico City Mexico
| | - Israel Camacho‐Abrego
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional Mexico City Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|
19
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1086. [PMID: 30917615 PMCID: PMC6466022 DOI: 10.3390/ijerph16061086] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, Co. Cork, P72 YF10, Ireland.
| |
Collapse
|
20
|
Ostróżka-Cieślik A, Dolińska B, Ryszka F. The Effect of Modified Biolasol Solution on the Efficacy of Storing Isolated Porcine Kidneys. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7465435. [PMID: 30539020 PMCID: PMC6260524 DOI: 10.1155/2018/7465435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/16/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
Abstract
Biolasol is a newly developed solution for storing the liver, pancreas, kidneys, and heart by simple hypothermia. It exhibits high efficacy in maintaining structural and functional integrity of the graft prior to its transplantation. The solution was modified by the addition of ascorbic acid (0.088g/l) and ascorbic acid with prolactin (1 μg/l PRL + 0.088g/l vitamin C). The effectiveness of the obtained solutions in the protection of nephrons of isolated porcine kidneys was assessed based on the analysis of the activity of ALT (alanine aminotransferase), AST (aspartate aminotransferase), and LDH (lactate dehydrogenase) as well as lactate concentration determined in perfundates collected after 2 h (0' and 30' preservation) and 48 h (0' and 30' preservation) of graft storage. It has been found that the synergistic action of Biolasol components determines the integrity and stability of cell membranes, which in turn affects the proper functioning of the organ after transplantation. The addition of ascorbic acid and prolactin to Biolasol affects the maintenance of the normal cytoskeleton of the stored graft.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, School of Pharmacy and the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, School of Pharmacy and the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
- “Biochefa” Pharmaceutical Research and Production Plant, Sosnowiec, Poland
| | - Florian Ryszka
- “Biochefa” Pharmaceutical Research and Production Plant, Sosnowiec, Poland
| |
Collapse
|
21
|
|