1
|
Alippe Y, Wang L, Coskun R, Muraro SP, Zhao FR, Elam-Noll M, White JM, Vota DM, Hauk VC, Gordon JI, Handley SA, Diamond MS. Fetal MAVS and type I IFN signaling pathways control ZIKV infection in the placenta and maternal decidua. J Exp Med 2024; 221:e20240694. [PMID: 39042188 PMCID: PMC11270594 DOI: 10.1084/jem.20240694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The contribution of placental immune responses to congenital Zika virus (ZIKV) syndrome remains poorly understood. Here, we leveraged a mouse model of ZIKV infection to identify mechanisms of innate immune restriction exclusively in the fetal compartment of the placenta. ZIKV principally infected mononuclear trophoblasts in the junctional zone, which was limited by mitochondrial antiviral-signaling protein (MAVS) and type I interferon (IFN) signaling mechanisms. Single nuclear RNA sequencing revealed MAVS-dependent expression of IFN-stimulated genes (ISGs) in spongiotrophoblasts but not in other placental cells that use alternate pathways to induce ISGs. ZIKV infection of Ifnar1-/- or Mavs-/- placentas was associated with greater infection of the adjacent immunocompetent decidua, and heterozygous Mavs+/- or Ifnar1+/- dams carrying immunodeficient fetuses sustained greater maternal viremia and tissue infection than dams carrying wild-type fetuses. Thus, MAVS-IFN signaling in the fetus restricts ZIKV infection in junctional zone trophoblasts, which modulates dissemination and outcome for both the fetus and the pregnant mother.
Collapse
MESH Headings
- Female
- Animals
- Pregnancy
- Interferon Type I/metabolism
- Interferon Type I/immunology
- Signal Transduction/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Placenta/immunology
- Placenta/virology
- Placenta/metabolism
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
- Zika Virus/immunology
- Zika Virus/physiology
- Mice
- Decidua/immunology
- Decidua/virology
- Decidua/metabolism
- Fetus/immunology
- Fetus/virology
- Trophoblasts/immunology
- Trophoblasts/virology
- Trophoblasts/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Immunity, Innate
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- Disease Models, Animal
Collapse
Affiliation(s)
- Yael Alippe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reyan Coskun
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis, MO, USA
| | - Stéfanie P Muraro
- Campinas State University, Laboratory of Emerging Viruses , Campinas, Brazil
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Elam-Noll
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - J Michael White
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine , St. Louis, MO, USA
| | - Daiana M Vota
- Universidad de Buenos Aires-CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales , Buenos Aires, Argentina
| | - Vanesa C Hauk
- Universidad de Buenos Aires-CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales , Buenos Aires, Argentina
| | - Jeffrey I Gordon
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine , St. Louis, MO, USA
| | - Scott A Handley
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine , St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
2
|
Lestari B, Fukushima T, Utomo RY, Wahyuningsih MSH. Apoptotic and non-apoptotic roles of caspases in placenta physiology and pathology. Placenta 2024; 151:37-47. [PMID: 38703713 DOI: 10.1016/j.placenta.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Caspases, a family of cysteine proteases, are pivotal regulators of apoptosis, the tightly controlled cell death process crucial for eliminating excessive or unnecessary cells during development, including placental development. Collecting research has unveiled the multifaceted roles of caspases in the placenta, extending beyond apoptosis. Apart from their involvement in placental tissue remodeling via apoptosis, caspases actively participate in essential regulatory processes, such as trophoblast fusion and differentiation, significantly influencing placental growth and functionality. In addition, growing evidence indicates an elevation in caspase activity under pathological conditions like pre-eclampsia (PE) and intrauterine growth restriction (IUGR), leading to excessive cell death as well as inflammation. Drawing from advancements in caspase research and placental development under both normal and abnormal conditions, we examine the significance of caspases in both cell death (apoptosis) and non-cell death-related processes within the placenta. We also discuss potential therapeutics targeting caspase-related pathways for placenta disorders.
Collapse
Affiliation(s)
- Beni Lestari
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Japan.
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Universitas Gadjah Mada, Yogyakarta, Indonesia; Department Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
3
|
Morimoto H, Ueno M, Tanabe H, Kono T, Ogawa H. Progesterone depletion results in Lamin B1 loss and induction of cell death in mouse trophoblast giant cells. PLoS One 2021; 16:e0254674. [PMID: 34260661 PMCID: PMC8279370 DOI: 10.1371/journal.pone.0254674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Trophoblast giant cells (TGCs), a mouse trophoblast subtype, have large amounts of cytoplasm and high ploidy levels via endocycles. The diverse functions and gene expression profiles of TGCs have been studied well, but their nuclear structures remain unknown. In this study, we focus on Lamin B1, a nuclear lamina, and clarify its expression dynamics, regulation and roles in TGC functions. TGCs that differentiated from trophoblast stem cells were used. From days 0 to 9 after differentiation, the number of TGCs gradually increased, but the amount of LMNB1 peaked at day 3 and then slightly decreased. An immunostaining experiment showed that LMNB1-depleted TGCs increased after day 6 of differentiation. These LMNB1-depleted TGCs diffused peripheral localization of the heterochromatin marker H3K9me2 in the nuclei. However, LMINB1-knock down was not affected TGCs specific gene expression. We found that the death of TGCs also increased after day 6 of differentiation. Moreover, Lamin B1 loss and the cell death in TGCs were protected by 10-6 M progesterone. Our results conclude that progesterone protects against Lamin B1 loss and prolongs the life and function of TGCs.
Collapse
Affiliation(s)
- Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Misuzu Ueno
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hideyuki Tanabe
- Department of Evolutionary Studies of Biosystems Science, School of Advanced Sciences, The Graduate University for Advanced Studies, SOKENDAI, Shonan Village, Hayama, Kanagawa, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|