1
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Jolly A, Fernández B, Mundo SL, Elguezabal N. Modeling Paratuberculosis in Laboratory Animals, Cells, or Tissues: A Focus on Their Applications for Pathogenesis, Diagnosis, Vaccines, and Therapy Studies. Animals (Basel) 2023; 13:3553. [PMID: 38003170 PMCID: PMC10668694 DOI: 10.3390/ani13223553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paratuberculosis is a chronic granulomatous enteritis caused by Mycobacterium avium subsp. Paratuberculosis that affects a wide variety of domestic and wild animals. It is considered one of the diseases with the highest economic impact on the ruminant industry. Despite many efforts and intensive research, paratuberculosis control still remains controversial, and the existing diagnostic and immunoprophylactic tools have great limitations. Thus, models play a crucial role in understanding the pathogenesis of infection and disease, and in testing novel vaccine candidates. Ruminant animal models can be restricted by several reasons, related to space requirements, the cost of the animals, and the maintenance of the facilities. Therefore, we review the potential and limitations of the different experimental approaches currently used in paratuberculosis research, focusing on laboratory animals and cell-based models. The aim of this review is to offer a vision of the models that have been used, and what has been achieved or discovered with each one, so that the reader can choose the best model to answer their scientific questions and prove their hypotheses. Also, we bring forward new approaches that we consider worth exploring in the near future.
Collapse
Affiliation(s)
- Ana Jolly
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
| | - Bárbara Fernández
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Silvia Leonor Mundo
- Cátedra de Inmunología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina; (B.F.); (S.L.M.)
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
- Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario-Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| |
Collapse
|
3
|
Zhang X, Kang Z, Yin D, Gao J. Role of neutrophils in different stages of atherosclerosis. Innate Immun 2023; 29:97-109. [PMID: 37491844 PMCID: PMC10468622 DOI: 10.1177/17534259231189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils constitute the first line of defense in human immunity and can be attracted to inflamed and infected sites by various chemokines. As essential players in immune processes, neutrophils theoretically play integral roles in the course of chronic inflammation-induced atherosclerosis. However, because neutrophils are rarely found in atherosclerotic lesions, their involvement in the pathophysiological progression of atherosclerosis has been largely underestimated or ignored. Recent research has revealed convincing evidence showing the presence of neutrophils in atherosclerotic lesions and has revealed neutrophil contributions to different atherosclerosis stages in mice and humans. This review describes the underlying mechanisms of neutrophils in different stages of atherosclerosis and highlights potential neutrophil-targeted therapeutic strategies relevant to atherosclerosis. An in-depth understanding of neutrophils' roles in atherosclerosis pathology will promote exploration of new methods for the prevention and treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
4
|
Estevinho MM, Cabeda J, Santiago M, Machado E, Silva R, Duro M, Pita I, Morais R, Macedo G, Bull TJ, Magro F, Sarmento A. Viable Mycobacterium avium subsp. paratuberculosis Colonizes Peripheral Blood of Inflammatory Bowel Disease Patients. Microorganisms 2023; 11:1520. [PMID: 37375022 DOI: 10.3390/microorganisms11061520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Pathobionts, particularly Mycobacterium avium subsp. paratuberculosis (MAP) and Escherichia coli isolates with adherence/invasive ability (AIEC) have been associated with inflammatory bowel disease (IBD), particularly Crohn's disease (CD). This study aimed to evaluate the frequency of viable MAP and AIEC in a cohort of IBD patients. As such, MAP and E. coli cultures were established from faecal and blood samples (with a total n = 62 for each) of patients with CD (n = 18), ulcerative colitis (UC, n = 15), or liver cirrhosis (n = 7), as well as from healthy controls (HC, n = 22). Presumptive positive cultures were tested by polymerase chain reaction (PCR), for a positive confirmation of MAP or E. coli identity. E. coli-confirmed isolates were then tested for AIEC identity using adherence and invasion assays in the epithelial cell line of Caco-2 and survival and replication assays in the macrophage cell line of J774. MAP sub-culture and genome sequencing were also performed. MAP was more frequently cultured from the blood and faecal samples of patients with CD and cirrhosis. E. coli presumptive colonies were isolated from the faecal samples of most individuals, in contrast to what was registered for the blood samples. Additionally, from the confirmed E. coli isolates, only three had an AIEC-like phenotype (i.e., one CD patient and two UC patients). This study confirmed the association between MAP and CD; however, it did not find a strong association between the presence of AIEC and CD. It may be hypothesized that the presence of viable MAP in the bloodstream of CD patients contributes to disease reactivation.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
| | - José Cabeda
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR, CIMAR), 4450-208 Matosinhos, Portugal
| | - Mafalda Santiago
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
| | - Elisabete Machado
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
| | - Ricardo Silva
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
| | - Mary Duro
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Escola Superior de Saúde Fernando Pessoa, 4200-253 Porto, Portugal
- LAQV@REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Inês Pita
- Department of Gastroenterology, Entre Douro e Vouga Hospital Center, 4520-211 Santa Maria da Feira, Portugal
| | - Rui Morais
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Tim J Bull
- Institute of Infection and Immunity, St George's University of London, London SW17 ORE, UK
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Amélia Sarmento
- FP-I3ID, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-150 Porto, Portugal
| |
Collapse
|
5
|
Dhiman A, Talukdar S, Chaubey GK, Dilawari R, Modanwal R, Chaudhary S, Patidar A, Boradia VM, Kumbhar P, Raje CI, Raje M. Regulation of Macrophage Cell Surface GAPDH Alters LL-37 Internalization and Downstream Effects in the Cell. J Innate Immun 2023; 15:581-598. [PMID: 37080180 PMCID: PMC10315065 DOI: 10.1159/000530083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), the major causative agent of tuberculosis, has evolved mechanisms to evade host defenses and persist within host cells. Host-directed therapies against infected cells are emerging as an effective option. Cationic host defense peptide LL-37 is known to internalize into cells and induce autophagy resulting in intracellular killing of M.tb. This peptide also regulates the immune system and interacts with the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inside macrophages. Our investigations revealed that GAPDH moonlights as a mononuclear cell surface receptor that internalizes LL-37. We confirmed that the surface levels of purinergic receptor 7, the receptor previously reported for this peptide, remained unaltered on M.tb infected macrophages. Upon infection or cellular activation with IFNγ, surface recruited GAPDH bound to and internalized LL-37 into endocytic compartments via a lipid raft-dependent process. We also discovered a role for GAPDH in LL-37-mediated autophagy induction and clearance of intracellular pathogens. In infected macrophages wherein GAPDH had been knocked down, we observed an inhibition of LL-37-mediated autophagy which was rescued by GAPDH overexpression. This process was dependent on intracellular calcium and p38 MAPK pathways. Our findings reveal a previously unknown process by which macrophages internalize an antimicrobial peptide via cell surface GAPDH and suggest a moonlighting role of GAPDH in regulating cellular phenotypic responses of LL-37 resulting in reduction of M.tb burden.
Collapse
Affiliation(s)
- Asmita Dhiman
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Anil Patidar
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | - Pradeep Kumbhar
- National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | - Manoj Raje
- Institute of Microbial Technology, CSIR, Chandigarh, India
| |
Collapse
|
6
|
Liu J, Wu Y, Ma W, Zhang H, Meng X, Zhang H, Guo M, Ling X, Li L. Anti-Inflammatory Activity of Panax notoginseng Flower Saponins Quantified Using LC/MS/MS. Molecules 2023; 28:molecules28052416. [PMID: 36903661 PMCID: PMC10005202 DOI: 10.3390/molecules28052416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Panax notoginseng (Burk) F. H. Chen is a traditional Chinese medicinal and edible plant. However, Panax notoginseng flower (PNF) is rarely used. Therefore, the purpose of this study was to explore the main saponins and the anti-inflammatory bioactivity of PNF saponins (PNFS). We explored the regulation of cyclooxygenase 2 (COX-2), a key mediator of inflammatory pathways, in human keratinocyte cells treated with PNFS. A cell model of UVB-irradiation-induced inflammation was established to determine the influence of PNFS on inflammatory factors and their relationship with LL-37 expression. An enzyme-linked immunosorbent assay and Western blotting analysis were used to detect the production of inflammatory factors and LL37. Finally, liquid chromatography-tandem mass spectrometry was employed to quantify the main active components (ginsenosides Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1, and notoginsenoside R1) in PNF. The results show that PNFS substantially inhibited COX-2 activity and downregulated the production of inflammatory factors, indicating that they can be used to reduce skin inflammation. PNFS also increased the expression of LL-37. The contents of ginsenosides Rb1, Rb2, Rb3, Rc, and Rd in PNF were much higher than those of Rg1, and notoginsenoside R1. This paper provides data in support of the application of PNF in cosmetics.
Collapse
Affiliation(s)
- Junchen Liu
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuehang Wu
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wenrui Ma
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyan Zhang
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xianyao Meng
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huirong Zhang
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Miaomiao Guo
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao Ling
- Beijing Lan Divine Technology Co., Ltd., Beijing 100048, China
| | - Li Li
- Beijing Key Lab of Plant Resource Research and Development, Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
7
|
Canive M, Badia-Bringué G, Alonso-Hearn M. The Upregulation of Cathepsin G Is Associated with Resistance to Bovine Paratuberculosis. Animals (Basel) 2022; 12:3038. [PMID: 36359162 PMCID: PMC9655680 DOI: 10.3390/ani12213038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/13/2023] Open
Abstract
An in silico genomic-transcriptomic combined approach allowed the identification of a polymorphism (cis-eQTL-rs41976219) in the Bos taurus genome associated with the CTSG mRNA expression in bovine blood samples, which suggests that individual genetic variation might modulate the CTSG transcriptional response. In the current study, a sandwich ELISA is used to measure the CTSG protein levels in supernatants of monocyte-derived macrophages (MDMs) isolated from cows with the AA (n = 5) and AC (n = 11) genotypes for the rs41976219 and infected ex vivo with MAP. Cows with the AC genotype have significantly higher CTSG protein levels (1.85 ng/mL) in the supernatants of enriched CD14+-MDMs after 2 h of infection when compared with infected CD14+-MDMs from cows with the AA genotype (1.68 ng/mL). Statistically significant differences in the intracellular MAP load at 7 d p.i. are observed between animals with the AA (2.16 log CFUs) and AC (1.44 log CFUs) genotypes. Finally, the association between the rs41976219 allelic variants and resistance to PTB is tested in a larger cattle population (n = 943) classified according to the presence (n = 442) or absence (n = 501) of PTB-associated lesions. The presence of the two minor alleles in the rs41976219 (CC) is more frequent among healthy cows than in cows with PTB-associated lesions in gut tissues (2.2% vs. 1.4%, OR = 0.61). In agreement with this, the CTSG levels in plasma samples of cows without lesions in gut tissues and with the CC (n = 8) genotype are significantly higher than in the plasmas of cows with the AA + AC (n = 36) genotypes.
Collapse
Affiliation(s)
- Maria Canive
- NEIKER-Basque Research and Technology Alliance (BRTA), 20850 Derio, Spain
| | - Gerard Badia-Bringué
- NEIKER-Basque Research and Technology Alliance (BRTA), 20850 Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Marta Alonso-Hearn
- NEIKER-Basque Research and Technology Alliance (BRTA), 20850 Derio, Spain
| |
Collapse
|
8
|
Yu Y, Zhang S, Xu G, Xu D, Zheng H, Li B, Shen K, Fu L. Identification of Mycobacterium avium subspecies paratuberculosis in sheep farms in Bayannaoer, Inner Mongolia, China (short communication). BMC Vet Res 2022; 18:281. [PMID: 35842628 PMCID: PMC9287916 DOI: 10.1186/s12917-022-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paratuberculosis is a widespread chronic infection of Mycobacterium avium subspecies paratuberculosis (MAP) that causes significant economic losses to the sheep industry. The current study investigated this disease, which causes diarrhea in sheep, particularly, in Bayannaoer, Inner Mongolia, China. Diagnosis was based on clinical symptoms, pathological autopsy, histopathological inspection, and serological and molecular methods. RESULTS MAP was confirmed using polymerase chain reaction using DNA extracted from tissue and fecal samples. Serum samples from 472 individual sheep were obtained to detect antibodies against MAP using an enzyme-linked immunosorbent assay. MAP antibodies were separately detected in 17.86% (35/196) and 18.48% (51/276) of sheep herds at approximately 6 months and ≥ 1 year of age, respectively. The tissue lesion and pathological section results were consistent with paratuberculosis infection. CONCLUSIONS To our knowledge, this is the first report of Mycobacterium avium subspecies paratuberculosis seroprevalence in Bayannaoer sheep in Inner Mongolia. Our findings show that MAP is not only prevalent, but also a potential threat to this region. Further investigations, including long-term epidemiological surveillance and isolation are needed for the awareness and effective treatment of paratuberculosis in sheep of Inner Mongolia.
Collapse
Affiliation(s)
- Yuandi Yu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Suhui Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Guoyang Xu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Dengfeng Xu
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Hua Zheng
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Bo Li
- Chongqing Academy of Animal Sciences, Chongqing, China.,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China
| | - Kefei Shen
- Chongqing Academy of Animal Sciences, Chongqing, China. .,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China.
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, China. .,Chongqing Research Center of Veterinary Biologicals Engineering and Technology, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, ChongQing, 402460, China.
| |
Collapse
|
9
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Ladero-Auñon I, Molina E, Holder A, Kolakowski J, Harris H, Urkitza A, Anguita J, Werling D, Elguezabal N. Bovine Neutrophils Release Extracellular Traps and Cooperate With Macrophages in Mycobacterium avium subsp. paratuberculosis clearance In Vitro. Front Immunol 2021; 12:645304. [PMID: 33815401 PMCID: PMC8010319 DOI: 10.3389/fimmu.2021.645304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (Map) is the underlying pathogen causing bovine paratuberculosis (PTB), an enteric granulomatous disease that mainly affects ruminants and for which an effective treatment is needed. Macrophages are the primary target cells for Map, which survives and replicates intracellularly by inhibiting phagosome maturation. Neutrophils are present at disease sites during the early stages of the infection, but seem to be absent in the late stage, in contrast to healthy tissue. Although neutrophil activity has been reported to be impaired following Map infection, their role in PTB pathogenesis has not been fully defined. Neutrophils are capable of releasing extracellular traps consisting of extruded DNA and proteins that immobilize and kill microorganisms, but this mechanism has not been evaluated against Map. Our main objective was to study the interaction of neutrophils with macrophages during an in vitro mycobacterial infection. For this purpose, neutrophils and macrophages from the same animal were cultured alone or together in the presence of Map or Mycobacterium bovis Bacillus-Calmette-Guérin (BCG). Extracellular trap release, mycobacteria killing as well as IL-1β and IL-8 release were assessed. Neutrophils released extracellular traps against mycobacteria when cultured alone and in the presence of macrophages without direct cell contact, but resulted inhibited in direct contact. Macrophages were extremely efficient at killing BCG, but ineffective at killing Map. In contrast, neutrophils showed similar killing rates for both mycobacteria. Co-cultures infected with Map showed the expected killing effect of combining both cell types, whereas co-cultures infected with BCG showed a potentiated killing effect beyond the expected one, indicating a potential synergistic cooperation. In both cases, IL-1β and IL-8 levels were lower in co-cultures, suggestive of a reduced inflammatory reaction. These data indicate that cooperation of both cell types can be beneficial in terms of decreasing the inflammatory reaction while the effective elimination of Map can be compromised. These results suggest that neutrophils are effective at Map killing and can exert protective mechanisms against Map that seem to fail during PTB disease after the arrival of macrophages at the infection site.
Collapse
Affiliation(s)
- Iraia Ladero-Auñon
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development-Basque Research and Technology Allianca (BRTA), Derio, Spain.,Food Quality and Safety Department, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Elena Molina
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development-Basque Research and Technology Allianca (BRTA), Derio, Spain
| | - Angela Holder
- Molecular Immunology Laboratory, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jeannine Kolakowski
- Molecular Immunology Laboratory, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Heather Harris
- Food Quality and Safety Department, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Vitoria-Gasteiz, Spain
| | | | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, Centro de Investigaciones Cooperativas (CIC) bioGUNE-Basque Research and Technology Alliance (BRTA), Derio, Spain.,Basque Foundation for Science, Bilbao, Spain
| | - Dirk Werling
- Molecular Immunology Laboratory, Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development-Basque Research and Technology Allianca (BRTA), Derio, Spain
| |
Collapse
|
11
|
Boucher E, Brown L, Lahiri P, Cobo ER. Peritoneal macrophages are impaired in cathelicidin-deficient mice systemically challenged with Escherichia coli. Cell Tissue Res 2021; 383:1203-1208. [PMID: 33496883 DOI: 10.1007/s00441-020-03362-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022]
Abstract
Cathelicidins are small, cationic peptides produced by macrophages with protective effects against infection although their involvement in phagocytosis is not fully understood. This study demonstrates that fewer macrophages were recruited in mice genetically deficient in cathelicidin (Camp-/-) during acute Escherichia coli-induced peritonitis and those macrophages had impaired phagocytosis. These defects seem due to endogenous functions of murine cathelicidin (CRAMP) as phagocytosis was not improved by synthetic human cathelicidin (LL-37) in a murine phagocytic cell line. This knowledge contributes to understanding the function of cathelicidins in the recruitment and function of phagocytic cells and differential roles between endogenous and exogenous cathelicidins.
Collapse
Affiliation(s)
- Emily Boucher
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Luke Brown
- Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Priyoshi Lahiri
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Eduardo R Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
12
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
13
|
Scheenstra MR, van Harten RM, Veldhuizen EJA, Haagsman HP, Coorens M. Cathelicidins Modulate TLR-Activation and Inflammation. Front Immunol 2020; 11:1137. [PMID: 32582207 PMCID: PMC7296178 DOI: 10.3389/fimmu.2020.01137] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cathelicidins are short cationic peptides that are part of the innate immune system. At first, these peptides were studied mostly for their direct antimicrobial killing capacity, but nowadays they are more and more appreciated for their immunomodulatory functions. In this review, we will provide a comprehensive overview of the various effects cathelicidins have on the detection of damage- and microbe-associated molecular patterns, with a special focus on their effects on Toll-like receptor (TLR) activation. We review the available literature based on TLR ligand types, which can roughly be divided into lipidic ligands, such as LPS and lipoproteins, and nucleic-acid ligands, such as RNA and DNA. For both ligand types, we describe how direct cathelicidin-ligand interactions influence TLR activation, by for instance altering ligand stability, cellular uptake and receptor interaction. In addition, we will review the more indirect mechanisms by which cathelicidins affect downstream TLR-signaling. To place all this information in a broader context, we discuss how these cathelicidin-mediated effects can have an impact on how the host responds to infectious organisms as well as how these effects play a role in the exacerbation of inflammation in auto-immune diseases. Finally, we discuss how these immunomodulatory activities can be exploited in vaccine development and cancer therapies.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Roel M van Harten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Maarten Coorens
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|
14
|
Shahid M, Cavalcante PA, Knight CG, Barkema HW, Han B, Gao J, Cobo ER. Murine and Human Cathelicidins Contribute Differently to Hallmarks of Mastitis Induced by Pathogenic Prototheca bovis Algae. Front Cell Infect Microbiol 2020; 10:31. [PMID: 32117805 PMCID: PMC7025567 DOI: 10.3389/fcimb.2020.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Prototheca bovis (formerly P. zopfii genotype-II) is an opportunistic, achlorophyllous alga that causes mastitis in cows and skin disease in cats and dogs, as well as cutaneous lesions in both immunocompetent and immunosuppressed humans. Antifungal medications are commonly ineffective. This study aimed to investigate innate immune responses contributed by cathelicidins to P. bovis in the mammary gland using a mastitis model in mice deficient in the sole murine cathelicidin (Camp). We determined P. bovis caused acute mastitis in mice and induced Camp gene transcription. Whereas, Camp-/- and Camp+/+ littermates had similar local algae burden, Camp+/+ mice produced more pro-inflammatory cytokines, TNF-α, and Cxcl-1. Likewise, Camp+/+ bone marrow-derived macrophages were more responsive to P. bovis, producing more TNF-α and Cxcl-1. Human cathelicidin (LL-37) exhibited a different effect against P. bovis; it had direct algicidal activity against P. bovis and lowered TNF-α, Cxcl-1, and IL-1β production in both cultured murine macrophages and mammary epithelial cells exposed to the pathogenic algae. In conclusion, cathelicidins were involved in protothecosis pathogenesis, with unique roles among the diverse peptide family. Whereas, endogenous cathelicidin (Camp) was key in mammary gland innate defense against P. bovis, human LL-37 had algicidal and immunomodulatory functions.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Paloma Araujo Cavalcante
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron G. Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|