1
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
2
|
He Y, Zhang L, Huang S, Tang Y, Li Y, Li H, Chen G, Chen X, Zhang X, Zhao W, Deng F, Yu D. Magnetic Graphene Oxide Nanocomposites Boosts Craniomaxillofacial Bone Regeneration by Modulating circAars/miR-128-3p/SMAD5 Signaling Axis. Int J Nanomedicine 2024; 19:3143-3166. [PMID: 38585472 PMCID: PMC10999216 DOI: 10.2147/ijn.s454718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Background The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Lejia Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Siyuan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Yuquan Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, 518107, People’s Republic of China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, GuangZhou, 510080, People’s Republic of China
| |
Collapse
|
3
|
Zhou J, Sui M, Ji F, Shen S, Lin Y, Jin M, Tao J. Hsa_circ_0036872 has an important promotional effect in enhancing osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. Int Immunopharmacol 2024; 130:111744. [PMID: 38412676 DOI: 10.1016/j.intimp.2024.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs), an extremely stable group of RNAs, possess a covalent closed-loop configuration. Numerous studies have highlighted the involvement of circRNAs in physiological processes and the development of various diseases. The present study aimed to investigate how circRNA regulates the osteogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS We isolated hDPSCs from dental pulp and used next-generation sequencing analysis to determine the differentially-expressed circRNAs during osteogenic differentiation. Bioinformatics and dual-luciferase reporter assays identified the downstream targets. The role of circRNAs in osteogenic differentiation was further confirmed through the use of heterotopic bone models. RESULTS We found that hsa_circ_0036872 expression was increased during osteogenic differentiation of hDPSCs, and downregulation of hsa_circ_0036872 inhibited their osteogenic differentiation. Dual-luciferase reporter assays showed that both miR-143-3p and IGF2 were downstream targets of hsa_circ_0036872. Overexpression of IGF2 or inhibition of miR-143-3p restored the osteogenic differentiation ability of hDPSCs after silencing hsa_circ_0036872. Overexpression of IGF2 reversed the inhibitory effect of miR-143-3p on osteogenic differentiation. CONCLUSION Taken together, our results show that hsa_circ_0036872 exerts an important promotional effect in enhancing the osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. These data suggest a novel therapeutic strategy for osteoporosis treatment and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Meizhi Sui
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Stomatology, Kashgar Prefecture Second People's Hospital, Kashgar Xinjiang 844000, China
| | - Fang Ji
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, ; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shihui Shen
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yueting Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai 201318, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
4
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Wang T, Zhang C, Xu L, Li X. Roles of circular RNAs in osteogenic/osteoclastogenic differentiation. Biofactors 2024; 50:6-15. [PMID: 37534732 DOI: 10.1002/biof.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023]
Abstract
The process of bone remodeling occurs and is regulated through interactions between osteoclasts, which resorb bone, and osteoblasts, which generate bone tissue. When the homeostatic balance between these two cell types is dysregulated, this can contribute to abnormal bone remodeling resulting in a loss of bone mass as is observed in osteoporosis (OP) and other forms of degenerative bone metabolic diseases. At present, details of molecular mechanism underlying the development of bone metabolic diseases such as OP remain to be elucidated. Circular RNAs (circRNAs) are small non-coding RNA molecules with a closed-loop structure that can regulate the differentiation of osteoclasts and osteoblasts. The present review provides a systematic overview of recent literature on the processes through which circRNAs regulate the dynamic balance between osteoblasts and osteoclasts that ultimately preserve bone homeostasis. It will also give insight that can shape current understanding of the pathogenesis of OP and other bone metabolic diseases to better guide diagnostic and treatment strategies for affected patients.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Chao Zhang
- Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Lin Xu
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| | - Xingnuan Li
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang, China
| |
Collapse
|
6
|
Baniasadi M, Talebi S, Mokhtari K, Zabolian AH, Khosroshahi EM, Entezari M, Dehkhoda F, Nabavi N, Hashemi M. Role of non-coding RNAs in osteoporosis. Pathol Res Pract 2024; 253:155036. [PMID: 38134836 DOI: 10.1016/j.prp.2023.155036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Osteoporosis, a prevalent bone disorder influenced by genetic and environmental elements, significantly increases the likelihood of fractures and bone weakness, greatly affecting the lives of those afflicted. Yet, the exact epigenetic processes behind the onset of osteoporosis are still unclear. Growing research indicates that epigenetic changes could act as vital mediators that connect genetic tendencies and environmental influences, thereby increasing the risk of osteoporosis and bone fractures. Within these epigenetic factors, certain types of RNA, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been recognized as key regulatory elements. These RNA types wield significant influence on gene expression through epigenetic regulation, directing various biological functions essential to bone metabolism. This extensive review compiles current research uncovering the complex ways in which miRNAs, lncRNAs, and circRNAs are involved in the development of osteoporosis, especially in osteoblasts and osteoclasts. Gaining a more profound understanding of the roles these three RNA classes play in osteoporosis could reveal new diagnostic methods and treatment approaches for this incapacitating condition. In conclusion, this review delves into the complex domain of epigenetic regulation via non-coding RNA in osteoporosis. It sheds light on the complex interactions and mechanisms involving miRNAs, lncRNAs, and circRNAs within osteoblasts and osteoclasts, offering an in-depth understanding of the less explored aspects of osteoporosis pathogenesis. These insights not only reveal the complexity of the disease but also offer significant potential for developing new diagnostic methods and targeted treatments. Therefore, this review marks a crucial step in deciphering the elusive complexities of osteoporosis, leading towards improved patient care and enhanced quality of life.
Collapse
Affiliation(s)
- Mojtaba Baniasadi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Talebi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,Iran
| | - Amir Hossein Zabolian
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Wang S, Pan C, Sheng H, Yang M, Yang C, Feng X, Hu C, Ma Y. Construction of a molecular regulatory network related to fat deposition by multi-tissue transcriptome sequencing of Jiaxian red cattle. iScience 2023; 26:108346. [PMID: 38026203 PMCID: PMC10665818 DOI: 10.1016/j.isci.2023.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Intramuscular fat (IMF) refers to the fat that accumulates between muscle bundles or within muscle cells, whose content significantly impacts the taste, tenderness, and flavor of meat products, making it a crucial economic characteristic in livestock production. However, the intricate mechanisms governing IMF deposition, involving non-coding RNAs (ncRNAs), genes, and complex regulatory networks, remain largely enigmatic. Identifying adipose tissue-specific genes and ncRNAs is paramount to unravel these molecular mysteries. This study, conducted on Jiaxian red cattle, harnessed whole transcriptome sequencing to unearth the nuances of circRNAs and miRNAs across seven distinct tissues. The interplay of these ncRNAs was assessed through differential expression analysis and network analysis. These findings are not only pivotal in unveiling the intricacies of fat deposition mechanisms but also lay a robust foundation for future research, setting the stage for enhancing IMF content in Jiaxian red cattle breeding.
Collapse
Affiliation(s)
- Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Mengli Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chaoyun Yang
- Xichang College, Liangshan Prefecture, Sichuan Province, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chunli Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
8
|
Ai L, Chen L, Tao Y, Wang H, Yi W. Icariin promotes osteogenic differentiation through the mmu_circ_0000349/mmu-miR-138-5p/Jumonji domain-containing protein-3 axis. Heliyon 2023; 9:e21885. [PMID: 38045146 PMCID: PMC10692785 DOI: 10.1016/j.heliyon.2023.e21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Circular RNAs (circRNAs) regulate Jumonji domain-containing protein-3 (JMJD3) by sponging with microRNAs (miRNAs). This study aimed to investigate the role of icariin on specific circRNA/miRNA/JMJD3 axis in osteogenic differentiation of MC3T3-E1 cells. CircRNA sequencing was performed on the MC3T3-E1 cells induced by osteogenic differentiation medium for 1 d (negative control (NC) group) and 14 d (osteogenesis group). And mmu_circ_0000349 was verified using Sanger sequencing, ribonuclease R degradation, and actinomycin D assay. The function of mmu_circ_0000349 was validated by detecting the expressions of osteogenic differentiation markers, alkaline phosphatase (ALP), and runt-related transcription (RUNX2), via real-time quantitative PCR (qPCR) and Western blotting or ALP and alizarin red staining assay. Dual luciferase reporter gene assay confirmed the relationship between mmu_circ_0000349 and mmu-miR-138-5p (or mmu-miR-138-5p and JMJD3). Meanwhile, the JMJD3 binding to mmu_circ_0000349 was screened using an RNA pull-down assay. qPCR and Western blotting confirmed the effect of icariin on the mmu_circ_0000349/mmu-miR-138-5p/JMJD3 axis and osteogenic differentiation. As MC3T3-E1 osteogenic differentiation progressed, the JMJD3 expression level increased. A total of 361 circRNAs exhibited differences between the NC and osteogenesis groups. After validation, mmu_circ_0000349 was further analyzed as it exhibited the largest expression. And mmu_circ_0000349 was identified as a stable circular structure. Overexpression of mmu_circ_0000349 increased the expression levels of ALP and RUNX2, enhanced ALP activity, and increased the number of mineralized nodules; contrarily, inhibition of mmu_circ_0000349 exerted opposite effects. The data also confirmed that mmu_circ_0000349 regulated JMJD3 by sponging with mmu-miR-138-5p. With the increase in icariin concentration and time for treatment, the expression levels of mmu_circ_0000349, JMJD3, ALP, and RUNX2 also increased, whereas that of mmu-miR-138-5p decreased. In conclusion, Icariin promoted osteogenic differentiation by regulating the mmu_circ_0000349/mmu-miR-138-5p/JMJD3 pathway. Therefore, this provides a theoretical basis for the treatment of diseases related to osteogenic differentiation.
Collapse
Affiliation(s)
- Liang Ai
- Department of TCM, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Liudan Chen
- Department of TCM and Acupuncture, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yangu Tao
- Department of TCM, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
| | - Haibin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weimin Yi
- Department of TCM and Acupuncture, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
9
|
Hjazi A, Sukmana BI, Ali SS, Alsaab HO, Gupta J, Ullah MI, Romero-Parra RM, Alawadi AHR, Alazbjee AAA, Mustafa YF. Functional role of circRNAs in osteogenesis: A review. Int Immunopharmacol 2023; 121:110455. [PMID: 37290324 DOI: 10.1016/j.intimp.2023.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteogenesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA, circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA, is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of circRNAs in osteogenesis might help the diagnosis as well as treatment of bone diseases such as bone defects and osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Bayu Indra Sukmana
- Department of Oral Biology, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406 U.P., India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Ahmed H R Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| |
Collapse
|
10
|
Moura SR, Fernandes MJ, Santos SG, Almeida MI. Circular RNAs: Promising Targets in Osteoporosis. Curr Osteoporos Rep 2023; 21:289-302. [PMID: 37119447 PMCID: PMC10169890 DOI: 10.1007/s11914-023-00786-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE OF REVIEW Circular RNAs (circRNAs) are RNA transcripts derived from fragments of pre-messenger RNAs through a back-splicing process. An advantage that rises from their circular covalently closed conformation is their high stability, when compared with their linear counterparts. The current review focuses on the emerging roles of circRNAs in osteoporosis, including in osteogenic differentiation and osteoclastogenesis. Their potential as osteoporosis biomarkers will also be discussed. RECENT FINDINGS Although firstly described as non-coding, some of these single-stranded RNAs were recently reported to possess protein-coding capacity. On the other hand, the circRNAs exhibit cell and tissue-specific patterns at the transcriptome level in eukaryotes and are regulated throughout the development or disease progression. Even though thousands of these circular transcripts are listed and annotated, only a limited number of studies describe their biological role in bone processes. Recent evidence indicates inhibitory activator roles in both osteoblasts and osteoclasts differentiation and function. Latest screenings in the blood, plasma, or serum of osteoporosis patients support the potential for circRNA signature to be used as biomarkers in osteoporosis, but further validation is required. While intense research into circRNAs has been detailing their biological roles, there remains a need for standardization and further research to fulfil the future potential of this emerging and highly promising class of regulatory molecules.
Collapse
Affiliation(s)
- Sara Reis Moura
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | - Maria Inês Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H, Suga N, Tsuji A, Matsuda S. CircRNAs and RNA-Binding Proteins Involved in the Pathogenesis of Cancers or Central Nervous System Disorders. Noncoding RNA 2023; 9:23. [PMID: 37104005 PMCID: PMC10142617 DOI: 10.3390/ncrna9020023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression programs that might influence cellular response and/or function. In particular, circRNAs have been considered to function as sponges of specific miRNA, regulating cellular processes at the post-transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their capability to cross the blood-brain barrier. Here, we present the current findings and theragnostic potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the development of novel diagnostic and/or therapeutic strategies for these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
12
|
Lu H, Zhang Z, Yuan X, Song H, Li P. The role of circular RNA hsa_circ_0001789 as a diagnostic biomarker in gastric carcinoma. Scand J Gastroenterol 2023; 58:248-253. [PMID: 36111683 DOI: 10.1080/00365521.2022.2122865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Circular RNA (circRNA) is a kind of endogenous non-coding RNAs and has shown diagnostic values in various cancers. This study aimed to explore whether hsa_circ_0001789 could be a novel biomarker for gastric cancer (GC). METHODS Quantitative reverse transcriptase PCR was used to detect the expression of hsa_circ_0001789 in 108 paired GC and paracancerous tissues as well as in 24 paired plasma specimens. Possible associations between hsa_circ_0001789 expression and clinicopathologic factors of GC patients were examined using one-way ANOVA. A receiver operating characteristic (ROC) curve was established to investigate the diagnostic value of hsa_circ_0001789 in GC. RESULTS GC tissues and plasma samples showed down-regulated hsa_circ_0001789 levels than their counterparts, which were closely correlated with the malignant characteristics of GC. The area under the ROC curve (AUC) of hsa_circ_0001789 in GC tissues was 0.82, while the cut-off value was 9.5, indicating a favorable diagnostic value. Compared with the traditional tumor biomarkers, hsa_circ_0001789 had preferred AUCs that reached 0.786 for predicting the stage of invasion, 0.603 for predicting the stage of lymphatic metastasis, 0.722 for predicting the stage of distant metastasis, and 0.786 for predicting TNM stage. CONCLUSIONS Hsa_circ_0001789 may be a novel biomarker for the diagnosis of gastric carcinoma.
Collapse
Affiliation(s)
- Hongpeng Lu
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Zhixin Zhang
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Xin Yuan
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang Province, China.,College of Medicine, Ningbo University, Ningbo, Zhejiang Province, China
| | - Haojun Song
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| | - Peifei Li
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, Zhejiang Province, China
| |
Collapse
|
13
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
14
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
15
|
Liu Y, Chen Q, Bao J, Pu Y, Han J, Zhao H, Ma Y, Zhao Q. Genome-Wide Analysis of Circular RNAs Reveals circCHRNG Regulates Sheep Myoblast Proliferation via miR-133/SRF and MEF2A Axis. Int J Mol Sci 2022; 23:ijms232416065. [PMID: 36555706 PMCID: PMC9781509 DOI: 10.3390/ijms232416065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
As relatively new members of the non-coding RNA family, circRNAs play important roles in a variety of biological processes. However, the temporal expression pattern and the function of circRNAs during sheep skeletal muscle development remains unclear. This study aimed to identify circRNAs related to sheep skeletal muscle development and explore their roles in myoblast proliferation. The circRNA expression profiles of longissimus dorsi of sheep from F90, L30, and A3Y were obtained by the RNA-seq method. The function and mechanisms of the novel circCHRNG in muscle satellite cell proliferation were explored using CCK-8 assay, Western blot, qPCR, and dual-luciferase reporter assay. We identified 12,375 circRNAs, including 476, 133, and 233 DEcircRNAs found among three comparative groups. KEGG results showed that DEcircRNAs were enriched in muscle contraction, the regulation of cell proliferation, and the AMPK, insulin, and PI3K-Akt signaling pathways. Notably, a novel circRNA, termed circRNA CHRNG, acts as a miR-133 sponge to promote skeletal muscle satellite cell proliferation. Our study provides a systematic description of circRNAs of ovine skeletal muscle across fetal, lamb, and adult stages. GO and KEGG analyses showed that DEcircRNAs were enriched in multiple pathways associated with muscle development, such as the PI3K-Akt and AMPK signaling pathways. In addition, we propose that circCHRNG acts as a miR-133 sponge to upregulate the expression levels of SRF and MEF2A, thereby promoting myoblast proliferation.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Bao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Huijing Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
16
|
miR-30a inhibits the osteogenic differentiation of the tibia-derived MSCs in congenital pseudarthrosis via targeting HOXD8. Regen Ther 2022; 21:477-485. [PMID: 36313394 PMCID: PMC9588990 DOI: 10.1016/j.reth.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Congenital pseudarthrosis of the tibia (CPT) is an uncommon congenital deformity and a special subtype of bone nonunion. The lower ability of osteogenic differentiation in CPT-derived mesenchymal stem cells (MSCs) could result in progression of CPT, and miR-30a could inhibit osteogenic differentiation. However, the role of miR-30a in CPT-derived MSCs remains unclear. Methods The osteogenic differentiation of CPT-derived MSCs treated with the miR-30a inhibitor was tested by Alizarin Red S staining and alkaline phosphatase (ALP) activity. The expression levels of protein and mRNA were assessed by Western blot or quantitative reverse transcription-polymerase chain reaction (RT-qPCR), respectively. The interplay between miR-30a and HOXD8 was investigated by a dual-luciferase reporter assay. Chromatin immunoprecipitation (ChIP) was conducted to assess the binding relationship between HOXD8 and RUNX2 promoter. Results CPT-derived MSCs showed a lower ability of osteogenic differentiation than normal MSCs. miR-30a increased in CPT-derived MSCs, and miR-30a downregulation promoted the osteogenic differentiation of CPT-derived MSCs. Meanwhile, HOXD8 is a direct target for miR-30a, and HOXD8 could transcriptionally activate RUNX2. In addition, miR-30a could inhibit the osteogenic differentiation of CPT-derived MSCs by negatively regulating HOXD8. Conclusion miR-30a inhibits the osteogenic differentiation of CPT-derived MSCs by targeting HOXD8. Thus, this study might supply a novel strategy against CPT.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- ADSCs, adipose-derived mesenchymal stem cells
- ALP, alkaline phosphatase
- ARS, Alizarin Red S
- CPT, congenital pseudarthrosis of the tibia
- ChIP, chromatin immunoprecipitation
- Congenital pseudarthrosis of the tibia
- DMEM, Dulbecco's modified Eagle's medium
- FBS, fetal bovine serum
- HOXD8
- HOXD8, Homeobox D8
- MSCs, mesenchymal stem cells
- OCN, osteocalcin
- OPN, osteopontin
- RT-qPCR, Quantitative reverse transcription PCR
- RUNX2
- RUNX2, runt-related transcription factor 2
- SD, standard deviation
- miR-30a
- miRNAs, MicroRNAs
- mut, mutant
- wt, wild-type
- α-MEM, α-minimum essential medium
Collapse
|
17
|
Yu K, Jiang Z, Miao X, Yu Z, Du X, Lai K, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis. Mol Ther 2022; 30:3226-3240. [PMID: 35642253 PMCID: PMC9552913 DOI: 10.1016/j.ymthe.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) play an important role in biological activities, especially in regulating osteogenic differentiation of stem cells. However, no studies have reported the role of circRNAs in early osseointegration. Here we identified a new circRNA, circRNA422, from rat bone marrow mesenchymal stem cells (BMSCs) cultured on sandblasted, large-grit, acid-etched titanium surfaces. The results showed that circRNA422 significantly enhanced osteogenic differentiation of BMSCs with increased expression levels of alkaline phosphatase, the SP7 transcription factor (SP7/osterix), and lipoprotein receptor-related protein 5 (LRP5). Silencing of circRNA422 had opposite effects. There were two SP7 binding sites on the LRP5 promoter, indicating a direct regulatory relationship between SP7 and LRP5. circRNA422 could regulate early osseointegration in in vivo experiments. These findings revealed an important function of circRNA422 during early osseointegration. Therefore, circRNA422 may be a potential therapeutic target for enhancing implant osseointegration.
Collapse
Affiliation(s)
- Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xue Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
18
|
Liang C, Li W, Huang Q, Wen Q. CircFKBP5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. Int Dent J 2022; 73:377-386. [DOI: 10.1016/j.identj.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
|
19
|
Zhang Y, Tian Z, Ye H, Sun X, Zhang H, Sun Y, Mao Y, Yang Z, Li M. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Dis 2022; 8:268. [PMID: 35595755 PMCID: PMC9122900 DOI: 10.1038/s41420-022-01062-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
As noncoding RNAs, circular RNAs (circRNAs) are covalently enclosed endogenous biomolecules in eukaryotes that have tissue specificity and cell specificity. circRNAs were once considered a rare splicing byproduct. With the development of high-throughput sequencing, it has been confirmed that they are expressed in thousands of mammalian genes. To date, only a few circRNA functions and regulatory mechanisms have been verified. Adipose is the main tissue for body energy storage and energy supply. Adipocyte metabolism is a physiological process involving a series of genes and affects biological activities in the body, such as energy metabolism, immunity, and signal transmission. When adipocyte formation is dysregulated, it will cause a series of diseases, such as atherosclerosis, obesity, fatty liver, and diabetes. In recent years, many noncoding RNAs involved in adipocyte metabolism have been revealed. This review provides a comprehensive overview of the basic structure and biosynthetic mechanism of circRNAs, and further discusses the circRNAs related to adipocyte formation in adipose tissue and liver. Our review will provide a reference for further elucidating the genetic regulation mechanism of circRNAs involved in adipocyte metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Zhichen Tian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Haibo Ye
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Xiaomei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Huiming Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yongjiang Mao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China. .,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| | - Mingxun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China. .,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|
20
|
Xiao J, Joseph S, Xia M, Teng F, Chen X, Huang R, Zhai L, Deng W. Circular RNAs Acting as miRNAs’ Sponges and Their Roles in Stem Cells. J Clin Med 2022; 11:jcm11102909. [PMID: 35629034 PMCID: PMC9145679 DOI: 10.3390/jcm11102909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of endogenous RNAs, have become a subject of intensive research. It has been found that circRNAs are important players in cell differentiation and tissue homeostasis, as well as disease development. Moreover, the expression of circRNAs is usually not correlated with their parental gene expression, indicating that they are not only a steady-state by-product of mRNA splicing but a product of variable splicing under novel regulation. Sequence conservation analysis has also demonstrated that circRNAs have important non-coding functions. CircRNAs exist as a covalently closed loop form in mammalian cells, where they regulate cellular transcription and translation processes. CircRNAs are built from pre-messenger RNAs, and their biogenesis involves back-splicing, which is catalyzed by spliceosomes. The splicing reaction gives rise to three different types of intronic, exotic and exon–intron circular RNAs. Due to higher nuclease stability and longer half lives in cells, circRNAs are more stable than linear RNAs and have enormous clinical advantage for use as diagnostic and therapeutic biomarkers for disease. In recent years, it has been reported that circRNAs in stem cells play a crucial role in stem cell function. In this article, we reviewed the general feature of circRNAs and the distinct roles of circRNAs in stem cell biology, including regulation of stem cell self-renewal and differentiation. CircRNAs have shown unique expression profiles during differentiation of stem cells and could serve as promising biomarkers of these cells. As circRNAs play pivotal roles in stem cell regulation as well as the development and progression of various diseases, we also discuss opportunities and challenges of circRNA-based treatment strategies in future effective therapies for promising clinical applications.
Collapse
Affiliation(s)
- Juan Xiao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Shija Joseph
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Mengwei Xia
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Feng Teng
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Rufeng Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
- Correspondence: (L.Z.); (W.D.)
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510060, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Zhangshu 336000, China
- Correspondence: (L.Z.); (W.D.)
| |
Collapse
|
21
|
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that widely exist in eukaryotes. As a new focus in the field of molecular regulation, circRNAs have attracted much attention in recent years. Previous studies have confirmed that circRNAs are associated with many physiological and pathological processes. CircRNAs also participate in the regulation of stem cells. Stem cells have the properties of self-renewal and differentiation, which make stem cell therapy popular. CircRNAs may serve as new targets in stem cell therapy due to their regulation in stem cells. However, the underlying relationships between circRNAs and stem cells are still being explored. In this review, we briefly summarize the effects of circRNAs on stem cells, in the context of biological activities, aging and apoptosis, and aberrant changes. Moreover, we also examine the biological roles of stem cell-derived exosomal circRNAs. We believe our review will provide insights into the effects of circRNAs on stem cells.
Collapse
|
22
|
CircRNA hsa_circ_0001421 promotes the osteoblast differentiation of human adipose mesenchymal stem cells through the miR-608/SP7 axis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep 2022; 42:BSR20212510. [PMID: 34908111 PMCID: PMC8738868 DOI: 10.1042/bsr20212510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, microRNA (miRNA) sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNA-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.
Collapse
Affiliation(s)
- Hui-Juan Lu
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei 438000, China
| | - Cun-Jian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Daping Zhang
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fenggang Yu
- Institute of Life Science, Yinfeng Biological Group, Jinan 250000, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| |
Collapse
|
24
|
Gao M, Zhang Z, Sun J, Li B, Li Y. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:945310. [PMID: 35992137 PMCID: PMC9388761 DOI: 10.3389/fendo.2022.945310] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic disease, mainly characterized by reduced bone mineral density and destruction of bone tissue microstructure. However, the molecular mechanisms of osteoporosis need further investigation and exploration. Increasing studies have reported that circular RNAs (circRNAs), a novel type of RNA molecule, play crucial roles in various physiological and pathological processes and bone-related diseases. Based on an in-depth understanding of their roles in bone development, we summarized the multiple regulatory roles and underlying mechanisms of circRNA-miRNA-mRNA networks in the treatment of osteoporosis, associated with bone marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Deeper insights into the vital roles of circRNA-miRNA-mRNA networks can provide new directions and insights for developing novel diagnostic biomarkers and therapeutic targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Manqi Gao
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiabin Sun
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| |
Collapse
|
25
|
Ping J, Li L, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. The Role of Long Non-Coding RNAs and Circular RNAs in Bone Regeneration: Modulating MiRNAs Function. J Tissue Eng Regen Med 2021; 16:227-243. [PMID: 34958714 DOI: 10.1002/term.3277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022]
Abstract
Although bone is a self-healing organ and is able to repair and restore most fractures, large bone fractures, about 10%, are not repairable. Bone grafting, as a gold standard, and bone tissue engineering using biomaterials, growth factors, and stem cells have been developed to restore large bone defects. Since bone regeneration is a complex and multiple-step process and the majority of the human genome, about 98%, is composed of the non-protein-coding regions, non-coding RNAs (ncRNAs) play essential roles in bone regeneration. Recent studies demonstrated that long ncRNAs (lncRNAs) and circular RNAs (circRNAs), as members of ncRNAs, are widely involved in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA or circRNA/miRNA/mRNA regulatory network. The constructed network regulates the differentiation of stem cells into osteoblasts and their commitment to osteogenesis. This review will present the structure and biogenesis of lncRNAs and circRNAs, the mechanism of bone repair, and the bone tissue engineering in bone defects. Finally, we will discuss the role of lncRNAs and circRNAs in osteogenesis and bone fracture healing through constructing various lncRNA or circRNA/miRNA/mRNA networks and the involved pathways. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianfeng Ping
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, China
| | - Laifeng Li
- Department of Traumatic Orthopaedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan, 250132, Shandong Province, China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, China
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Sun
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| |
Collapse
|
26
|
Song XH, He N, Xing YT, Jin XQ, Li YW, Liu SS, Gao ZY, Guo C, Wang JJ, Huang YY, Hu H, Wang LL. A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells. Front Genet 2021; 12:761926. [PMID: 34858478 PMCID: PMC8630790 DOI: 10.3389/fgene.2021.761926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging process is poorly understood. Rat subcutaneous adipose tissue from 10-week-old and 27-month-old rats were used for hematoxylin and eosin (H and E) staining, TUNEL staining, and circRNA sequencing. Rat adipose tissue-derived stromal cells were cultured and overexpressed with circ-ATXN2. Proliferation was examined using xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Apoptosis was induced by CoCl2 and examined using flow cytometry. RT-PCR assay and Oil Red O staining were used to measure adipogenesis at 48 h and 14 days, respectively. H and E staining showed that the diameter of adipocytes increased; however, the number of cells decreased in old rats. TUNEL staining showed that the proportion of apoptotic cells was increased in old rats. A total of 4,860 and 4,952 circRNAs was detected in young and old rats, respectively. Among them, 67 circRNAs exhibited divergent expression between the two groups (fold change ≥2, p ≤ 0.05), of which 33 were upregulated (49.3%) and 34 were downregulated (50.7%). The proliferation of circ-ATXN2-overexpressing cells decreased significantly in vitro, which was further validated by xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Overexpression of circ-ATXN2 significantly increased the total apoptotic rate from 5.78 ± 0.46% to 11.97 ± 1.61%, early apoptotic rate from 1.76 ± 0.22% to 5.50 ± 0.66%, and late apoptosis rate from 4.02 ± 0.25% to 6.47 ± 1.06% in adipose tissue-derived stromal cells. Furthermore, in circ-ATXN2-overexpressing cells, RT-PCR assay revealed that the expression levels of adipose differentiation-related genes PPARγ and CEBP/α were increased and the Oil Red O staining assay showed more lipid droplets. Our study revealed the expression profile of circRNAs in the adipose tissue of old rats. We found a novel age-related circular RNA—circ-ATXN2—that inhibits proliferation and promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells.
Collapse
Affiliation(s)
- Xing-Hui Song
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning He
- Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Ting Xing
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Qin Jin
- China Medical Research Center, Zhejiang Chinese Medical University Academy of Chinese Medical Sciences, Hangzhou, China
| | - Yan-Wei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Zi-Ying Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chun Guo
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Jia Wang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Huang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Pan X, Cen X, Zhang B, Pei F, Huang W, Huang X, Zhao Z. Circular RNAs as potential regulators in bone remodeling: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1505. [PMID: 34805367 PMCID: PMC8573438 DOI: 10.21037/atm-21-2114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
Objective In this review, we focus on the recent progress of circular ribonucleic acids (circRNAs)-related molecular mechanisms in the processes of osteogenesis and osteoclastogenesis, and explore their roles in the development of bone-remodeling disorders. Background The well-coupled bone-formation and bone-resorption processes are vital in bone remodeling. Once the balance is disrupted, bone-remodeling disorders (e.g., osteoporosis and osteopetrosis) occur, severely affecting patients’ quality of life. CircRNAs, the newly discovered members of the non-coding RNA family, have been reported to act as key checkpoints of various signaling pathways that influence osteoblasts and osteoclasts functions, thus regulating the physiological and pathological processes of bone homeostasis. Methods Three English and three Chinese databases [i.e., PubMed, Embase, MEDLINE (via Ovid), Chinese Biomedical Literature, China National Knowledge Infrastructure, and VIP databases] were searched to June 2021 without language restrictions. Studies exploring the roles of circRNAs in key bone remodeling mediators, such as Smad-dependent bone morphogenetic protein (BMP)/transforming growth factor beta (TGF-β), Wnts, runt-related transcription factor (RUNX), forkhead boxes (FOXs), colony-stimulating factor 1 (CSF-1), receptor activator of nuclear factor kappa B ligand (RANKL)/osteoprotegerin (OPG), and circRNA-related bone-remodeling disorders, were included. Conclusions Many circRNAs have been shown to promote osteogenesis and facilitate osteoclast differentiation via diverse mechanisms, and thus modulate the process of bone homeostasis. The imbalance or impairment of these two parts causes diseases, such as osteoporosis, and osteonecrosis of the femoral head, which are also closely correlated to the aberrant presence of circRNAs. Current evidence provides us with promising diagnosis and treatment methods for some bone homeostasis disorders.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
A regulatory role of circRNA-miRNA-mRNA network in osteoblast differentiation. Biochimie 2021; 193:137-147. [PMID: 34742858 DOI: 10.1016/j.biochi.2021.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Osteoblast differentiation is an important process in skeletal development and bone remodelling. Serious bone diseases occur from any delay, defect, or imbalance in osteoblastic differentiation. Non-coding RNAs (ncRNAs) play a regulatory role in controlling the expression of proteins under physiological and pathological conditions via inhibiting mRNA translation or degrading mRNA. Circular RNAs (circRNAs) and microRNAs (miRNAs) are the long and small ncRNAs, respectively, which have been reported to regulate the expression of osteoblast marker genes directly or indirectly. Also, recent studies identified the regulatory mechanisms involving the crosstalk among circRNAs, miRNAs, and mRNAs during osteoblast differentiation. Understanding these regulatory mechanisms behind osteoblastic differentiation would help to diagnose or treat bone and bone-related disorders. Hence, the current review comprehensively discussed the regulatory relationship of circRNAs, miRNAs and mRNAs, and their functional role as circRNA-miRNA-mRNA axis in osteoblast differentiation.
Collapse
|
29
|
Huang Y, Wan S, Yang M. Circ_0067680 expedites the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells through miR-4429/CTNNB1/Wnt/β-catenin pathway. Biol Direct 2021; 16:16. [PMID: 34649595 PMCID: PMC8515698 DOI: 10.1186/s13062-021-00302-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human bone marrow-derived mesenchymal stem cells (hBMSCs) are the primary source of osteoblasts in vivo. Emerging literatures have unveiled that circular RNAs (circRNAs) are actively drawn in the osteogenic differentiation of mesenchymal stem cells (MSCs). This research mainly illuminated the role of circ_0067680 as well as its regulatory mechanism in osteoblastic differentiation. METHODS In this study, RT-qPCR was to measure the expression of circ_0067680. Functional assays were implemented to assess the role of circ_0067680 in osteogenic differentiation. Besides, RNA pull down, RIP and luciferase reporter assays were carried out to investigate the regulatory mechanism of circ_0067680. RESULTS Circ_0067680, which derived from its host gene divergent protein kinase domain 2A (C3orf58), was up-regulated during osteogenic differentiation of hBMSCs. Besides, circ_0067680 deficiency impeded the osteoblastic differentiation of hBMSCs. Moreover, circ_0067680 served as a ceRNA via sequestering miR-4429 to regulate the expression of catenin beta 1 (CTNNB1), thereby activating the Wnt/β-catenin signaling pathway. CONCLUSION Circ_0067680 accelerated hBMSCs osteogenic differentiation by the miR-4429/CTNNB1/Wnt/β-catenin signaling, which might be used as a potential biomarker for osteoblastic differentiation.
Collapse
Affiliation(s)
- Yuansheng Huang
- Traumatic Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Su Wan
- Department of Gynecology, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, 241001, Anhui, China.
| | - Min Yang
- Traumatic Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| |
Collapse
|