1
|
Pacini V, Petit F, Querat B, Laverriere JN, Cohen-Tannoudji J, L'hôte D. Identification of a pituitary ERα-activated enhancer triggering the expression of Nr5a1, the earliest gonadotrope lineage-specific transcription factor. Epigenetics Chromatin 2019; 12:48. [PMID: 31391075 PMCID: PMC6685283 DOI: 10.1186/s13072-019-0291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/07/2019] [Indexed: 01/27/2023] Open
Abstract
Background Gonadotrope lineage differentiation is a stepwise process taking place during pituitary development. The early step of gonadotrope lineage specification is characterized by the expression of the Nr5a1 transcription factor, a crucial factor for gonadotrope cell fate determination. Abnormalities affecting Nr5a1 expression lead to hypogonadotropic hypogonadism and infertility. Although significant knowledge has been gained on the signaling and transcriptional events controlling gonadotrope differentiation, epigenetic mechanisms regulating Nr5a1 expression during early gonadotrope lineage specification are still poorly understood. Results Using ATAC chromatin accessibility analyses on three cell lines recapitulating gradual stages of gonadotrope differentiation and in vivo on developing pituitaries, we demonstrate that a yet undescribed enhancer is transiently recruited during gonadotrope specification. Using CRISPR/Cas9, we show that this enhancer is mandatory for the emergence of Nr5a1 during gonadotrope specification. Furthermore, we identify a highly conserved estrogen-binding element and demonstrate that the enhancer activation is dependent upon estrogen acting through ERα. Lastly, we provide evidence that binding of ERα is crucial for chromatin remodeling of Nr5a1 enhancer and promoter, leading to RNA polymerase recruitment and transcription. Conclusion This study identifies the earliest regulatory sequence involved in gonadotrope lineage specification and highlights the key epigenetic role played by ERα in this differentiation process. Electronic supplementary material The online version of this article (10.1186/s13072-019-0291-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincent Pacini
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Florence Petit
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Bruno Querat
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Jean-Noël Laverriere
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Joëlle Cohen-Tannoudji
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - David L'hôte
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France.
| |
Collapse
|
2
|
Relation among Aromatase P450 and Tumoral Growth in Human Prolactinomas. Int J Mol Sci 2017; 18:ijms18112299. [PMID: 29104246 PMCID: PMC5713269 DOI: 10.3390/ijms18112299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023] Open
Abstract
The pituitary gland is part of hypothalamic-pituitary–gonadal axis, which controls development, reproduction, and aging in humans and animals. In addition, the pituitary gland is regulated mainly by hormones and neurotransmitters released from the hypothalamus and by systemic hormones secreted by target glands. Aromatase P450, the enzyme responsible for the catabolization of aromatizable androgens to estrogens, is expressed in different parts of body, including the pituitary gland. Moreover, aromatase P450 is involved in sexual dimorphism where alteration in the level of aromatase can initiate a number of diseases in both genders. On the other hand, the direct actions of estrogens, mainly estradiol, are well known for stimulating prolactin release. Numerous studies have shown that changes in the levels of estrogens, among other factors, have been implicated in the genesis and development of prolactinoma. The pituitary gland can produce estradiol locally in several types of endocrine cells, and it is possible that aromatase could be responsible for the maintenance of the population of lactotroph cells and the modulation of the action of central or peripheral regulators. Aromatase overexpression due to inappropriate gene regulation has clinical effects such as the pathogenesis of prolactinomas. The present study reports on the synthesis of pituitary aromatase, its regulation by gonadal steroids, and the physiological roles of aromatase on pituitary endocrine cells. The involvement of aromatase in the pathogenesis of pituitary tumors, mainly prolactinomas, through the auto-paracrine production of estradiol is reviewed.
Collapse
|
3
|
García-Barrado MJ, Blanco EJ, Catalano-Iniesta L, Sanchez-Robledo V, Iglesias-Osma MC, Carretero-Hernández M, Rodríguez-Cobos J, Burks DJ, Carretero J. Relevance of pituitary aromatase and estradiol on the maintenance of the population of prolactin-positive cells in male mice. Steroids 2016; 111:121-126. [PMID: 27046736 DOI: 10.1016/j.steroids.2016.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
In previous studies we demonstrated the expression of aromatase in pituitary cells. This expression is gender related, and is also associated with the presence of prolactinomas. To ascertain the relevance of aromatase in modulating the populations of prolactin-positive pituitary cells an immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out using the pituitary glands of adult male and female aromatase-knockout (ArKO) mice. Additionally has been determined if pituitary aromatase is involved in a gender-linked differentiated regulation of the prolactin-producing pituitary cells. Compared to wild-type mice, the knockout animals of both genders showed a significant decrease (p<0.01) in the cellular and nuclear areas of their prolactin cells, as well as in the percentages of the prolactin-positive cells and the proliferating prolactin cells. Our results suggest that estradiol is responsible for the maintenance of the population of prolactin cell in males and, so as not to disturb the endocrine reproductive environment, estradiol is synthesized inside the pituitary by circulating testosterone via means of aromatase P450, which acts in paracrine way. This new role for pituitary aromatase may well explain the previous findings establishing that the pituitary expression of aromatase is higher in males than in females, and the association between the development of prolactinomas and the increased expression of aromatase in tumours.
Collapse
Affiliation(s)
- María José García-Barrado
- Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - Enrique J Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain
| | | | | | - María Carmen Iglesias-Osma
- Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | | | - Javier Rodríguez-Cobos
- Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - Deborah Jane Burks
- Laboratory of Molecular Neuroendocrinology, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology of the Institute for Neuroscience of Castilla & Leon, and Laboratory of Neuroendocrinology and Obesity of the Institute of Biomedical Research of Salamanca, University of Salamanca, Spain.
| |
Collapse
|
4
|
Ozkaya HM, Comunoglu N, Keskin FE, Oz B, Haliloglu OA, Tanriover N, Gazioglu N, Kadioglu P. Locally produced estrogen through aromatization might enhance tissue expression of pituitary tumor transforming gene and fibroblast growth factor 2 in growth hormone-secreting adenomas. Endocrine 2016; 52:632-40. [PMID: 26578364 DOI: 10.1007/s12020-015-0802-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
Abstract
Aromatase, a key enzyme in local estrogen synthesis, is expressed in different pituitary tumors including growth hormone (GH)-secreting adenomas. We aimed to evaluate aromatase, estrogen receptor α (ERα), estrogen receptor β (ERβ), pituitary tumor transforming gene (PTTG), and fibroblast growth factor 2 (FGF2) expressions in GH-secreting adenomas, and investigate their correlation with clinical, pathologic, and radiologic parameters. This cross-sectional study was conducted in a tertiary center in Turkey. Protein expressions were determined via immunohistochemical staining in ex vivo tumor samples of 62 patients with acromegaly and ten normal pituitary tissues. Concordantly increased aromatase, PTTG, and FGF2 expressions were detected in the tumor samples as compared with controls (p < 0.001 for all). None of the tumors expressed ERα while ERβ was detected only in mixed somatotroph adenomas. Aromatase, ERβ, PTTG expressions were not significantly different between patients with and without remission (p > 0.05 for all). FGF2 expression was significantly higher in patients without postoperative and late remission (p = 0.002 and p = 0.012, respectively), with sphenoid bone invasion, optic chiasm compression, and somatostatin analog resistance (p = 0.005, p = 0.033, and p = 0.013, respectively). Aromatase, PTTG and FGF2 expressions were positively correlated with each other (r = 0,311, p = 0.008 for aromatase, FGF2; r = 0.380, p = 0.001 for aromatase, PTTG; r = 0.400, p = 0.001 for FGF2, PTTG). PTTG-mediated FGF2 upregulation is associated with more aggressive tumor features in patients with acromegaly. Also, locally produced estrogen through aromatization might have a role in this phenomenon.
Collapse
Affiliation(s)
- Hande Mefkure Ozkaya
- Department of Endocrinology and Metabolism, Cerrahpasa Medical School, University of Istanbul, Cerrahpasa, 34303, Istanbul, Turkey
| | - Nil Comunoglu
- Department of Pathology, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey
| | - Fatma Ela Keskin
- Department of Endocrinology and Metabolism, Cerrahpasa Medical School, University of Istanbul, Cerrahpasa, 34303, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey
| | - Ozlem Asmaz Haliloglu
- Department of Endocrinology and Metabolism, Cerrahpasa Medical School, University of Istanbul, Cerrahpasa, 34303, Istanbul, Turkey
| | - Necmettin Tanriover
- Department of Neurosurgery, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey
| | - Nurperi Gazioglu
- Department of Neurosurgery, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey
| | - Pinar Kadioglu
- Department of Endocrinology and Metabolism, Cerrahpasa Medical School, University of Istanbul, Cerrahpasa, 34303, Istanbul, Turkey.
| |
Collapse
|
5
|
Carretero J, López F, Catalano-Iniesta L, Sanchez-Robledo V, Garcia-Barrado MJ, Iglesias-Osma MC, Carretero-Hernandez M, Blanco EJ, Burks DJ. Pituitary Aromatase P450 May Be Involved in Maintenance of the Population of Luteinizing Hormone-Positive Pituitary Cells in Mice. Cells Tissues Organs 2016; 201:390-8. [DOI: 10.1159/000445478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
As aromatase P450 is located in several pituitary cells, testosterone can be transformed into 17β-estradiol in the gland by the enzyme. The possible role of this transformation in pituitary function remains to be elucidated, but some evidence suggests a physiological and pathophysiological role for pituitary aromatase. To determine its relevance in the modulation of pituitary function, mainly associated with reproduction, luteinizing hormone (LH)-positive cells in the hypophysis of female and male aromatase knockout (ArKO) mice were studied. In all LH-positive cells, significant increases in the cellular (p < 0.01) and nuclear (p < 0.05) areas were found in the ArKO mice compared to the wild-type mice. In the ArKO mice, LH-positive cells were more abundant (p < 0.01); they were characterized by a stronger cytoplasmic reaction and the cells were more polygonal and exhibited more short, thick cytoplasmic prolongations than those in the wild-type mice. Moreover, LH-positive cells showed a greater proliferation rate in the ArKO mice compared to the wild-type mice (p < 0.01). These findings suggest that the local production of estradiol mediated by pituitary aromatase is necessary for the regulation of LH-positive gonadotropic cells, exerting an autoparacrine inhibitory regulation. These results could underlie the higher pituitary aromatase expression observed in male versus female mice. Similar effects were found in ArKO male and female mice, suggesting that in both sexes the effects of estrogens on maintenance of the LH-positive pituitary cell population could be related to the local aromatization of testosterone to estradiol inside the hypophysis. Therefore, aromatase could modulate pituitary LH-positive cells in males through local estradiol synthesis.
Collapse
|
6
|
Magri ML, Gottardo MF, Zárate S, Eijo G, Ferraris J, Jaita G, Ayala MM, Candolfi M, Pisera D, Seilicovich A. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats. Endocrine 2016; 51:506-16. [PMID: 26296379 DOI: 10.1007/s12020-015-0719-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/08/2015] [Indexed: 12/22/2022]
Abstract
Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats. Now, we examined the in vitro and in vivo effects of gonadal steroids on apoptosis of anterior pituitary cells from adult male rats. T in vitro did not modify apoptosis in anterior pituitary cells from gonadectomized (GNX) male rats. DHT, a non-aromatizable androgen, exerted direct antiapoptotic action on total anterior pituitary cells and folliculo-stellate cells, but not on lactotropes, somatotropes, or gonadotropes. On the contrary, E2 exerted a rapid apoptotic effect on total cells as well as on lactotropes and somatotropes. Incubation of anterior pituitary cells with T in presence of Finasteride, an inhibitor of 5α-reductase, increased the percentage of TUNEL-positive cells. In vivo administration of DHT to GNX rats reduced apoptosis in the anterior pituitary whereas E2 exerted proapoptotic action and reduced cells in G2/M-phase of the cell cycle. In summary, our results indicate that DHT and E2 have opposite effects on apoptosis in the anterior pituitary gland suggesting that local metabolization of T to these steroids could be involved in pituitary cell turnover in males. Changes in expression and/or activity of 5α-reductase and aromatase may play a role in the development of anterior pituitary tumors.
Collapse
Affiliation(s)
- María Laura Magri
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - María Florencia Gottardo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Guadalupe Eijo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Mariela Moreno Ayala
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Caglar AS, Kapucu A, Dar KA, Ozkaya HM, Caglar E, Ince H, Kadioglu P. Localization of the aromatase enzyme expression in the human pituitary gland and its effect on growth hormone, prolactin, and thyroid stimulating hormone axis. Endocrine 2015; 49:761-8. [PMID: 25697985 DOI: 10.1007/s12020-015-0537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/16/2015] [Indexed: 01/27/2023]
Abstract
The aim of this study is to evaluate aromatase expression in prolactin (PRL), thyroid stimulating hormone (TSH), and growth hormone (GH) secreting cells. Nontumoral human pituitary specimens were obtained from autopsy samples. Aromatase co-expression was determined by double immunohistochemical staining and assessed using H scores. H scores for GH-aromatase co-expression (GH-aromatase), TSH-aromatase co-expression (TSH-aromatase), and PRL-aromatase co-expression (PRL-aromatase) were 83.1 ± 13.1, 95.6 ± 16.1, and 83.7 ± 14.5, respectively. TSH producing cells exhibited the highest H score for co-expression of aromatase (p < 0.001). There was no gender difference in terms of H scores for aromatase expression and double immunohistochemical staining results (p > 0.05 for all). There was a negative correlation between the H scores for aromatase and PRL-aromatase, GH-aromatase and TSH-aromatase, respectively (r = -0.592, p < 0.001; r = -0.593, p < 0.001; r = -0.650, p < 0.001, respectively). Also, H scores for aromatase co-expression of each hormone were negatively correlated with the H scores for the corresponding hormone (r = -0.503, p < 0.001 for PRL-aromatase and PRL; r = -0.470, p < 0.001 for GH-aromatase, and GH; r = -0.641, p < 0.001 for TSH-aromatase and TSH). H scores for mean aromatase, GH-aromatase, TSH-aromatase were invariant of age (p > 0.05 for all). Age was negatively correlated with PRL-aromatase H score (r = -0.373, p = 0.008). Our study demonstrated significant aromatase co-expression in PRL, GH, and TSH secreting cells of the human anterior pituitary gland. The mutual paracrinal regulation between aromatase and three adenohypophyseal hormones indicates that aromatase may have a regulatory role on the synthesis and secretion of these hormones.
Collapse
Affiliation(s)
- Asli Sezgin Caglar
- Endocrinology and Metabolism Department, Cerrahpasa Medical School, University of Istanbul, 34303, Cerrahpasa, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
8
|
Selek A, Cetinarslan B, Gurbuz Y, Tarkun I, Canturk Z, Cabuk B. Aromatase enzyme expression in acromegaly and its possible relationship with disease prognosis. Endocrine 2015; 49:250-7. [PMID: 25300784 DOI: 10.1007/s12020-014-0445-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to evaluate aromatase enzyme expression in growth hormone (GH) secreting adenomas and comparison with prolactinomas, nonfunctional adenomas, and normal pituitary tissues. Also the impact of its expression on clinical and prognostic features was evaluated. 38 acromegaly, 26 prolactinoma, and 31 nonfunctional pituitary adenoma and 11 normal pituitary gland samples from autopsies were included. Aromatase and estrogen receptor-alpha (ERα) were evaluated by Immunohistochemical method; demographic, pre- and postoperative features of the patients were noted. Aromatase was expressed in varying degrees in all cases in study including controls. Aromatase expression in patients with acromegaly was significantly higher than patients with prolactinoma, nonfunctional adenoma, and controls (p = 0.04, p = 0.01 and p < 0.001, respectively). Taken together two functional adenoma groups, prolactinoma and acromegaly, aromatase expression was negatively correlated with ER-alpha (p = 0.02, r = -0.34). Also, Ki-67 immunohistochemical results were negatively correlated with aromatase expression (p = 0.03, r = -0.27) while positively correlated with ER expression (p < 0.01). Consistent with the growing evidence about testosterone effect on pituitary functions, aromatase expression was found to be higher in GH-secreting pituitary adenoma. Aromatase was expressed in all pituitary tissues including autopsy samples; however, it was highest in patients with acromegaly. In patients with acromegaly and prolactinoma, aromatase expression was negatively correlated with Ki-67 score, and also it was higher in patients with complete postoperative remission than without remission. Therefore, aromatase expression may be a good prognostic marker predominantly in acromegaly.
Collapse
Affiliation(s)
- Alev Selek
- Department of Endocrinology and Methabolism, Faculty of Medicine, Kocaeli University, Kocaeli, 41380, Turkey,
| | | | | | | | | | | |
Collapse
|
9
|
Gonzales PH, Mezzomo LC, Ferreira NP, Roehe AV, Kohek MBF, Oliveira MDC. Aromatase P450 expression in human pituitary adenomas. Neuropathology 2014; 35:16-23. [DOI: 10.1111/neup.12145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/05/2023]
Affiliation(s)
| | - Lisiane Cervieri Mezzomo
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Laboratory of Molecular Biology; UFCSPA; Porto Alegre RS Brazil
| | - Nelson Pires Ferreira
- Neuroendocrinology Center; Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA); Porto Alegre RS Brazil
| | | | - Maria Beatriz Fonte Kohek
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Laboratory of Molecular Biology; UFCSPA; Porto Alegre RS Brazil
| | - Miriam da Costa Oliveira
- Post-Graduation Program of Pathology; UFCSPA; Porto Alegre RS Brazil
- Neuroendocrinology Center; Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA); Porto Alegre RS Brazil
| |
Collapse
|
10
|
Local transformations of androgens into estradiol by aromatase P450 is involved in the regulation of prolactin and the proliferation of pituitary prolactin-positive cells. PLoS One 2014; 9:e101403. [PMID: 24978194 PMCID: PMC4076335 DOI: 10.1371/journal.pone.0101403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/05/2014] [Indexed: 01/24/2023] Open
Abstract
In previous studies we demonstrated the immunohistochemical expression of aromatase in pituitary cells. In order to determine whether pituitary aromatase is involved in the paracrine regulation of prolactin-producing pituitary cells and the physiological relevance of pituitary aromatase in the control of these cells, an in vivo and in vitro immunocytochemical and morphometric study of prolactin-positive pituitary cells was carried out on the pituitary glands of adult male rats treated with the aromatase antagonist fadrozole. Moreover, we analyzed the expression of mRNA for the enzyme in pituitary cells of male adult rats by in situ hybridization. The aromatase-mRNA was seen to be located in the cytoplasm of 41% of pituitary cells and was well correlated with the immunocytochemical staining. After in vivo treatment with fadrozole, the size (cellular and nuclear areas) of prolactin cells, as well as the percentage of prolactin-positive cells and the percentage of proliferating-prolactin cells, was significantly decreased. Moreover, fadrozole decreased serum prolactin levels. In vitro, treatment with fadrozole plus testosterone induced similar effects on prolactin-positive cells, inhibiting their cellular proliferation. Our results suggest that under physiological conditions aromatase P450 exerts a relevant control over male pituitary prolactin-cells, probably transforming testosterone to estradiol in the pituitary gland.
Collapse
|
11
|
Ratner LD, Rulli SB, Huhtaniemi IT. Genetically modified mouse models addressing gonadotropin function. Reprod Biol 2014; 14:9-15. [DOI: 10.1016/j.repbio.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
|
12
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|
13
|
Carretero J, Blanco EJ, Carretero M, Carretero-Hernández M, García-Barrado MJ, Iglesias-Osma MC, Burks DJ, Font de Mora J. The expression of AIB1 correlates with cellular proliferation in human prolactinomas. Ann Anat 2013; 195:253-9. [PMID: 23433587 DOI: 10.1016/j.aanat.2013.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
Estrogens as well as certain growth factors strongly influence the development and growth of prolactinomas. However, the molecular mechanisms by which extracellular factors trigger prolactinomas are not well known. Amplified in breast cancer 1 (AIB1), also known as steroid receptor co-activator 3 (SRC-3), belongs to the p160/SRC family of nuclear receptor co-activators and is a major co-activator of the estrogen receptor. Here, we report that the estrogen receptor coactivator AIB1 is overexpressed in human prolactinomas and correlates with the detection of aromatase and estrogen receptor α (ERα). Of the 87 pituitary tumors evaluated in women, 56%, corresponding to hyperoprolactinemic women, contained an enriched population of prolactin-positive cells and hence were further classified as prolactinomas. All prolactinomas stained positive for both ERα and AIB1. Moreover, AIB1 sub-cellular distribution was indicative of the cell-cycle status of tumors; the nuclear expression of AIB1 was correlated with proliferative markers whereas the cytoplasmic localization of AIB1 coincided with active caspase-3. Thus, our results demonstrate for the first time that AIB1 is expressed in prolactinomas and suggest its participation in the regulation of proliferation and apoptosis of tumoral cells. Because aromatase expression is also enhanced in these prolactinomas and it is involved in the local production of estradiol, both mechanisms, ER-AIB1 and aromatase could be related.
Collapse
Affiliation(s)
- José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Galanin in adrenocorticotropic hormone cells is decreased by castration. Cell Tissue Res 2011; 346:35-41. [DOI: 10.1007/s00441-011-1242-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
15
|
Corbin CJ, Berger T, Ford JJ, Roselli CE, Sienkiewicz W, Trainor BC, Roser JF, Vidal JD, Harada N, Conley AJ. Porcine hypothalamic aromatase cytochrome P450: isoform characterization, sex-dependent activity, regional expression, and regulation by enzyme inhibition in neonatal boars. Biol Reprod 2009; 81:388-95. [PMID: 19403926 DOI: 10.1095/biolreprod.109.076331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta, and preimplantation blastocyst. All catalyze estrogen synthesis, but the gonadal-type enzyme is unique in also synthesizing a nonaromatizable biopotent testosterone metabolite, 1OH-testosterone (1OH-T). P450arom is expressed in the vertebrate brain, is higher in males than females, but has not been investigated in pigs, to our knowledge. Therefore, these studies defined which of the porcine CYP19 genes was expressed, and at what level, in adult male and female hypothalamus. Regional expression was examined in mature boars, and regulation of P450arom expression in neonatal boars was investigated by inhibition of P450arom with letrozole, which is known to reprogram testicular expression. Pig hypothalami expressed the gonadal form of P450arom (redesignated the "gonadal/hypothalamic" porcine CYP19 gene and paralogue) based on functional analysis confirmed by cloning and sequencing transcripts. Hypothalamic tissue synthesized 1OH-T and was sensitive to the selective P450arom inhibitor etomidate. Levels were 4-fold higher in male than female hypothalami, with expression in the medial preoptic area and lateral borders of the ventromedial hypothalamus of boars. In vivo, letrozole-treated neonates had increased aromatase activity in hypothalami but decreased activity in testes. Therefore, although the same CYP19 gene is expressed in both tissues, expression is regulated differently in the hypothalamus than testis. These investigations, the first such studies in pig brain to our knowledge, demonstrate unusual aspects of P450arom expression and regulation in the hypothalamus, offering promise of gaining better insight into roles of P450arom in reproductive function.
Collapse
Affiliation(s)
- C J Corbin
- Department of Population Health & Reproduction, University of California Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kadioglu P, Oral G, Sayitoglu M, Erensoy N, Senel B, Gazioglu N, Sav A, Cetin G, Ozbek U. Aromatase cytochrome P450 enzyme expression in human pituitary. Pituitary 2008; 11:29-35. [PMID: 17703364 DOI: 10.1007/s11102-007-0065-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aromatase (P450AROM) converts testosterone to estrogen. This conversion could be important in normal physiology and estradiol-induced tumorigenesis in human pituitary. The objective of this study was to examine the expression of P450AROM in normal human pituitary and determine the gender difference. We examined aromatase expression in 19 normal human pituitary glands [13 males, 6 females, median age: 30 years (interquartile ranges, IQR: 23-63)] obtained from autopsy. We demonstrated aromatase gene expression levels by quantitative RT-PCR and aromatase protein with immunohistochemical staining in normal male and female human pituitary. Although median relative expression level of aromatase mRNA of male individuals [median DeltaCt = 42.6 (IQR: 7.6-93.9)] was higher than the female individuals [median DeltaCt = 3.9 (IQR:0-44.8)], we could not determine a significant gender difference in aromatase mRNA levels (p = 0.2). The difference between the aromatase protein density by immunohistochemistry was not significant between genders (p = 0.78). The aromatase levels were also not correlated with the age of the study subjects (p = 0.42 r = -0.21). The results indicate that aromatase enzyme is present in human pituitary. The amount and the density of the enzyme show a large variance among different individuals. Although higher mRNA expression was observed in male pituitary compared to female pituitary, there was no statistically significant difference for gender or age.
Collapse
Affiliation(s)
- Pinar Kadioglu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Istanbul, Cerrahpasa, Istanbul 34303, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pei M, Matsuda KI, Sakamoto H, Kawata M. Intrauterine proximity to male fetuses affects the morphology of the sexually dimorphic nucleus of the preoptic area in the adult rat brain. Eur J Neurosci 2006; 23:1234-40. [PMID: 16553785 DOI: 10.1111/j.1460-9568.2006.04661.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies on polytocous rodents have revealed that the fetal intrauterine position influences its later anatomy, physiology, reproductive performance and behavior. To investigate whether the position of a fetus in the uterus modifies the development of the brain, we examined whether the structure of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of rat brains accorded to their intrauterine positions. Brain sections of adult rats gestated between two male fetuses (2M) and between two female fetuses (2F) in the uterus were analysed for their immunoreactivity to calbindin-D28k, which is a marker of the SDN-POA. The SDN-POA volume of the 2M adult males was greater than that of the 2F adult males, whereas the SDN-POA volume of the 2M and 2F adult females showed no significant difference. This result indicated that contiguous male fetuses have a masculinizing effect on the SDN-POA volume of the male. To further examine whether the increment of SDN-POA volume in adulthood was due to exposure to elevated steroid hormones during fetal life, concentrations of testosterone and 17beta-estradiol in the brain were measured with 2M and 2F fetuses during gestation, respectively. On gestation day 21, the concentrations of testosterone and 17beta-estradiol in the brain were significantly higher in the 2M male rats as compared with the 2F male rats. The results suggested that there was a relationship between the fetal intrauterine position, hormone transfer from adjacent fetuses and the SDN-POA volume in adult rat brains.
Collapse
Affiliation(s)
- Minjuan Pei
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
18
|
Galmiche G, Richard N, Corvaisier S, Kottler ML. The expression of aromatase in gonadotropes is regulated by estradiol and gonadotropin-releasing hormone in a manner that differs from the regulation of luteinizing hormone. Endocrinology 2006; 147:4234-44. [PMID: 16763067 DOI: 10.1210/en.2005-1650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of estrogens is dual: they suppress basal expression of gonadotropins and enhance GnRH responsiveness at the time of the LH surge. Estrogens are synthesized by cytochrome P450 aromatase (P450arom), encoded by the cyp19 gene. We focused on the cyp19 gene in rat and showed that it is expressed in gonadotropes through promoters PII and PI.f, using RT-PCR and dual fluorescence labeling with anti-P450arom and -LH antibodies. Real-time PCR quantification revealed that aromatase mRNA levels varied during the estrous cycle and were significantly increased after ovariectomy. This effect is prevented by estradiol (E2) as well as GnRH antagonist administration, suggesting that GnRH may mediate the steroid effect. Interestingly, the long-acting GnRH agonist that induces LH desensitization does not modify aromatase expression in ovariectomized rats. Administration of E2 in ovariectomized rats receiving either GnRH agonist or GnRH antagonist clearly demonstrated that E2 also reduces cyp19 expression at the pituitary level. The selective estrogen receptor-alpha ligand propyl pyrazole triol and the selective estrogen receptor-beta ligand diarylpropionitrile both mimic the E2 effects. By contrast, propyl pyrazole triol reduces LH beta expression whereas diarylpropionitrile does not. In addition, using transient transfection assays in an L beta T2 gonadotrope cell line, we provided evidence that GnRH agonist stimulated, in a dose-dependant manner, cyp19 promoters PII and PI.f and that E2 decreased the GnRH stimulation. In conclusion, our data demonstrate that GnRH is an important signal in the regulation of cyp19 in gonadotrope cells. Both common and specific intracellular factors were responsible for dissociated variations of LH beta and cyp19 expression.
Collapse
Affiliation(s)
- Guillaume Galmiche
- Département Génétique et Reproduction, UFR de médecine, F-14033 Caen, France.
| | | | | | | |
Collapse
|
19
|
Huhtaniemi I, Ahtiainen P, Pakarainen T, Rulli SB, Zhang FP, Poutanen M. Genetically modified mouse models in studies of luteinising hormone action. Mol Cell Endocrinol 2006; 252:126-35. [PMID: 16675102 DOI: 10.1016/j.mce.2006.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Numerous genetically modified mouse models have recently been developed for the study of the pituitary-gonadal interactions. They include spontaneous or engineered knockouts (KO) of the gonadotrophin-releasing hormone (GnRH) and its receptor, the gonadotrophin common-alpha(Calpha), luteinising hormone (LH) beta and follicle-stimulating hormone (FSH) beta subunits, and the two gonadotrophin receptors (R), LHR and FSHR. In addition, there are also transgenic (TG) mice overexpressing gonadotrophin subunits and producing supraphysiological levels of these hormones. These models have offered relevant phenocopies for similar mutations in humans and to a great extent expanded our knowledge on normal and pathological functions of the hypothalamic-pituitary-gonadal (HPG) axis. The purpose of this article is to review some of our recent findings on two such mouse models, the LHR KO mouse (LuRKO), and the hCG overexpressing TG mouse (hCG+).
Collapse
Affiliation(s)
- Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Iruthayanathan M, Zhou YH, Childs GV. Dehydroepiandrosterone restoration of growth hormone gene expression in aging female rats, in vivo and in vitro: evidence for actions via estrogen receptors. Endocrinology 2005; 146:5176-87. [PMID: 16150906 PMCID: PMC1868401 DOI: 10.1210/en.2005-0811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A decline in dehydroepiandrosterone (DHEA) and GH levels with aging may be associated with frailty and morbidity. Little is known about the direct effects of DHEA on somatotropes. We recently reported that 17beta-estradiol (E2), a DHEA metabolite, stimulates the expression of GH in vitro in young female rats. To test the hypothesis that DHEA restores function in aging somatotropes, dispersed anterior pituitary (AP) cells from middle-aged (12-14 months) or young (3-4 months) female rats were cultured in vitro with or without DHEA or E2 and fixed for immunolabeling or in situ hybridization. E2 increased the percentage of AP cells with GH protein or mRNA in the aged rats to young levels. DHEA increased the percentages of somatotropes (detected by GH protein or mRNA) from 14-16 +/- 2% to 29-31 +/- 3% (P < or = 0.05) and of GH mRNA (detected by quantitative RT-PCR) only in aging rats. To test DHEA's in vivo effects, 18-month-old female rats were injected with DHEA or vehicle for 2.5 d, followed by a bolus of GHRH 1 h before death. DHEA treatment increased serum GH 1.8-fold (7 +/- 0.5 to 12 +/- 1.3 ng/ml; P = 0.02, by RIA) along with a similar increase (P = 0.02) in GH immunolabel. GHRH target cells also increased from 11 +/- 1% to 19 +/- 2% (P = 0.03). Neither GH nor GHRH receptor mRNAs levels were changed. To test the mechanisms behind DHEA's actions, AP cells from aging rats were treated with DHEA with or without inhibitors of DHEA metabolism. Trilostane, aminogluthemide, or ICI 182,780 completely blocked the stimulatory effects of DHEA, suggesting that DHEA metabolites may stimulate aging somatotropes via estrogen receptors.
Collapse
Key Words
- ap, anterior pituitary
- dhea, dehydroepiandrosterone
- e2, 17β-estradiol
- er, estrogen receptor
- ghrh r, ghrh receptor
- hprt, hypoxanthine guanine phosphoribosyltransferase
- 3β-hsd, 3β-hydroxysteroid dehydrogenase
- iod, integrated optical density
- its, insulin, transferrin, sodium selenite, and bsa
- qrt-pcr, quantitative rt-pcr
Collapse
Affiliation(s)
| | | | - Gwen V. Childs
- Address all correspondence and requests for reprints to: Dr. Gwen V. Childs, Department of Neurobiology and Developmental Sciences, College of Medicine, 4301 W. Markham, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72212. E-mail:
| |
Collapse
|
21
|
Carretero J, Angoso M, Rubio M, Blanco EJ, Sierra E, Herrero JJ, Pérez E, Burks DJ. In vitro immunoblockade of VIP inhibits the proliferation of pituitary prolactin cells. ACTA ACUST UNITED AC 2005; 211:11-8. [PMID: 16328361 DOI: 10.1007/s00429-005-0058-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
VIP is a peptide synthesised in the pituitary gland and is involved in the stimulation of prolactin secretion. However, to date it has not been determined whether VIP is able to regulate the proliferation of pituitary prolactin-producing cells, like other factors involved in the regulation of prolactin such as estradiol or dopamine. The aim of the present study was to address whether VIP is involved in regulating the proliferation of pituitary prolactin-secreting cells. Thus, we performed an in vitro study on monolayer cultures of rat pituitary cells, neutralising the possible paracrine effect of VIP by immunoblockade of the peptide and later determining the degree of proliferation of prolactin-secreting cells. The effects of immunoblockade were validated by determining the levels of VIP in the culture media, which were decreased (P < 0.01), and modifications in the patterns of the immunohistochemical reaction to prolactin-positive cells. Immunoblockade of VIP decreased the proliferation of pituitary prolactin-positive cells at all antibody concentrations analysed, mainly between 3 and 12 h (P < 0.01). Moreover, immunoblockade decreased the sizes of the cellular and nuclear areas, except at 1 h, at which point it only decreased the nuclear area of prolactin-positive cells. The results obtained suggest that-in the same way as it regulates the secretion of the hormone-VIP could be involved in regulating the proliferation of prolactin cells, like estradiol or dopamine.
Collapse
Affiliation(s)
- José Carretero
- Department of Human Anatomy and Histology and Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León, Faculty of Medicine, University of Salamanca, Avda. Alfonso X el Sabio, s/n, 37007 Salamanca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Huhtaniemi I, Rulli S, Ahtiainen P, Poutanen M. Multiple sites of tumorigenesis in transgenic mice overproducing hCG. Mol Cell Endocrinol 2005; 234:117-26. [PMID: 15836960 DOI: 10.1016/j.mce.2004.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 10/05/2004] [Indexed: 11/24/2022]
Abstract
We have produced transgenic (TG) mice expressing under the ubiquitin C promoter either the glycoprotein hormone common alpha-subunit (C(alpha)) or human chorionic gonadotropin (hCG) beta-subunit. C(alpha) overexpression alone had no phenotypic effect, but the hCG(beta) expressing females, presenting with moderately elevated levels of bioactive LH/hCG, due to dimerization of the TG hCG(beta) with endogenous C(alpha), developed multiple gonadal and extragonadal neoplasias. Crosses of the C(alpha) and hCG(beta) mice (hCG(alpha)beta) had >1000-fold elevated hCG levels, due to ubiquitous transgene expression, and presented with more aggressive tumour formation. The ovaries displayed initially strong luteinisation of all somatic cell types, leading to formation of luteomas, and subsequently to germ cell tumours (teratomas). The pituitary glands of TG females were massively enlarged, up to >100 mg, developing macroprolactinomas with very high prolactin (PRL) production. This endocrine response probably induced breast cancers in the mice. In contrast to the females, similar high levels of hCG in male mice had only marginal effects in adulthood, with slight Leydig cell hyperplasia and atrophy in the seminiferous epithelium. However, clear Leydig cell adenomas were observed in postnatal mice, apparently originating from fetal Leydig cells. In conclusion, these studies demonstrate marked tumorigenic effects of supraphysiological hCG levels in female mice, but clear resistance to similar changes in males. The extragonadal tumours were induced by hCG stimulated aberrant ovarian endocrine function, rather than by direct hCG action, because gonadectomy prevented all extragonadal phenotypes despite persistent hCG elevation. The phenotypes of the TG mice apparently represent exaggerated responses to hCG/LH and/or gonadal steroids. It remains to be explored to what extent they simulate respective responses in humans to pathophysiological elevation of the same hormones.
Collapse
Affiliation(s)
- Ilpo Huhtaniemi
- Department of Physiology, University of Turku, Kiinamyllynkatu 10, 20540 Turku, Finland.
| | | | | | | |
Collapse
|
23
|
Carretero J, Bodego P, Rodríguez RE, Rubio M, Blanco E, Burks DJ. Expression of the mu-opioid receptor in the anterior pituitary gland is influenced by age and sex. Neuropeptides 2004; 38:63-8. [PMID: 15223267 DOI: 10.1016/j.npep.2004.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 01/17/2004] [Indexed: 11/18/2022]
Abstract
To analyze whether opioids are able to modulate endocrine regulation by acting directly on rat pituitary cells, an immunohistochemical study of micro-opioid receptor expression in these cells was performed, with attention given to the analysis of potential age- and sex-related variations in receptor expression patterns. In both sexes, the micro-opioid receptor was detected in the pituitary pars distalis. However, significant age-related differences were observed. Both in male and female rats, the percentage of micro-opioid receptor-expressing cells decreased significantly from postnatal week one through the 24 months of our study. Interestingly, pituitary cells containing the micro-opioid receptor were significantly more numerous in male than in female, with exception of the pre-pubertal phase and old rats. According to two-way analysis of variance, the gender-related differences in micro-receptor expression were independent of age-related variations. Thus, without excluding hypothalamic actions, our results suggest that opioids may exert their endocrine function by acting directly on pituitary cells.
Collapse
Affiliation(s)
- J Carretero
- Department of Human Anatomy and Histology, Lab. Neuroendocrinología experimental y Diabetes, InCyL, Faculty of Medicine, University of Salamanca, Avda. Alfonso X el Sabio, s/n, E-37007, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Rulli SB, Kuorelahti A, Karaer O, Pelliniemi LJ, Poutanen M, Huhtaniemi I. Reproductive disturbances, pituitary lactotrope adenomas, and mammary gland tumors in transgenic female mice producing high levels of human chorionic gonadotropin. Endocrinology 2002; 143:4084-95. [PMID: 12239120 DOI: 10.1210/en.2002-220490] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To assess the consequences of prolonged exposure to elevated levels of LH/human chorionic gonadotropin (hCG) in the female, we developed a transgenic (TG) mouse model (hCGbeta+) that overexpresses the hCGbeta-subunit cDNA. Because of the promoter used, ubiquitin C, the transgene is expressed in multiple tissues, including the pituitary gland, in which coupling with the endogenous common alpha-subunit results in synthesis of high levels of bioactive hCG. The TG females presented with precocious puberty, infertility, enhanced ovarian steroidogenesis, and abnormal uterine structure. Pituitary enlargement was evident from the age of 2 months, which progressed to adenomas by the age of 10-12 months. Immunohistochemical studies and electron microscopy demonstrated lactotrope origin for the adenomas, associated with severe hyperprolactinemia. The mammary glands of TG females showed marked lobuloalveolar development followed by mammary tumors with characteristics of adenocarcinoma at the age of 9-12 months. More than 90% of penetrance and high frequency of metastasis (47%) was observed. Formation of the pituitary and mammary gland tumors was totally abolished by ovariectomy despite persistently elevated hCG levels. Taken together, these findings suggest that the hCG-induced aberrations of ovarian function are clearly responsible for the extragonadal tumors observed in these TG mice.
Collapse
MESH Headings
- Adenoma/chemically induced
- Adenoma/metabolism
- Adenoma/pathology
- Animals
- Chorionic Gonadotropin, beta Subunit, Human/administration & dosage
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Dose-Response Relationship, Drug
- Female
- Genitalia, Female/pathology
- Genitalia, Female/physiopathology
- Hormones/biosynthesis
- Humans
- Hyperprolactinemia/chemically induced
- Infertility/chemically induced
- Infertility/pathology
- Infertility/physiopathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic/genetics
- Obesity/chemically induced
- Ovary/metabolism
- Pituitary Gland, Anterior/pathology
- Pituitary Neoplasms/chemically induced
- Pituitary Neoplasms/metabolism
- Pituitary Neoplasms/pathology
- Prolactin/metabolism
Collapse
|
25
|
Carretero J, Burks DJ, Vázquez G, Rubio M, Hernández E, Bodego P, Vázquez R. Expression of aromatase P450 is increased in spontaneous prolactinomas of aged rats. Pituitary 2002; 5:5-10. [PMID: 12638719 DOI: 10.1023/a:1022176631922] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have recently reported the presence of aromatase P450 in the rat hypophysis. This enzyme is responsible for the aromatization of testosterone to estradiol. Since the induction of prolactinomas has been demonstrated in the rat following chronic treatment with estradiol, the aim of the present study was to analyze whether a relationship exists between the presence of pituitary aromatase and the appearance of spontaneous prolactinomas in aged rats. Of a series of 90 adenomas studied, 53% showed prolactin immunoreactive cells and were classified as prolactinomas; only 33% of the adenomas were pure prolactinomas and the other 20% were multi-hormonal protactinomas. Moreover, 60% of the adenomas were aromatase-positive tumors. Interestingly, 100% of the pure prolactinomas were aromatase-positive while only 60% of the multi-hormonal prolactinomas expressed the enzyme. Western blotting with anti-aromatase antibodies revealed a 3.8-fold increase in expression of aromatase in pituitary tumors as compared to normal rat pituitary gland. Double immunohistochemical labeling detected the coexistence of prolactin and aromatase P450 in prolactinoma cells. ACTH- and LH-positive adenomas were considered as controls; only multi-hormonal ACTH and LH tumors display aromatase-positive cells and all of these also contained prolactin-positive cells. Our results demonstrate for the first time that aromatase is expressed in pituitary adenomas and that it is related to the functional nature of the tumor, especially in the case of pure prolactinomas, suggesting the possibility that an abnormally high conversion of testosterone into estradiol in pituitary cells may contribute to the genesis of spontaneous prolactinomas in aged rats.
Collapse
Affiliation(s)
- José Carretero
- Laboratory of Neuroendocrinology, Institute for Neuroscience of Castilla y Léon, University of Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Although it has been known for many years that estrogen administration has deleterious effects on male fertility, data from transgenic mice deficient in estrogen receptors or aromatase point to an essential physiological role for estrogen in male fertility. This review summarizes the current knowledge on the localization of estrogen receptors and aromatase in the testis in an effort to understand the likely sites of estrogen action. The review also discusses the many studies that have used models employing the administration of estrogenic substances to show that male fertility is responsive to estrogen, thus providing a mechanism by which inappropriate exposure to estrogenic substances may cause adverse effects on spermatogenesis and male fertility. The reproductive phenotypes of mice deficient in estrogen receptors alpha and/or beta and aromatase are also compared to evaluate the physiological role of estrogen in male fertility. The review focuses on the effects of estrogen administration or deprivation, primarily in rodents, on the hypothalamo-pituitary-testis axis, testicular function (including Leydig cell, Sertoli cell, and germ cell development and function), and in the development and function of the efferent ductules and epididymis. The requirement for estrogen in normal male sexual behavior is also reviewed, along with the somewhat limited data on the fertility of men who lack either the capacity to produce or respond to estrogen. This review highlights the ability of exogenous estrogen exposure to perturb spermatogenesis and male fertility, as well as the emerging physiological role of estrogens in male fertility, suggesting that, in this local context, estrogenic substances should also be considered "male hormones."
Collapse
Affiliation(s)
- L O'Donnell
- Prince Henry's Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|