1
|
Stack GM, Carlson CH, Toth JA, Philippe G, Crawford JL, Hansen JL, Viands DR, Rose JKC, Smart LB. Correlations among morphological and biochemical traits in high-cannabidiol hemp ( Cannabis sativa L.). PLANT DIRECT 2023; 7:e503. [PMID: 37347078 PMCID: PMC10280002 DOI: 10.1002/pld3.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Cannabis sativa is cultivated for multiple uses including the production of cannabinoids. In developing improved production systems for high-cannabinoid cultivars, scientists and cultivators must consider the optimization of complex and interacting sets of morphological, phenological, and biochemical traits, which have historically been shaped by natural and anthropogenic selection. Determining factors that modulate cannabinoid variation within and among genotypes is fundamental to developing efficient production systems and understanding the ecological significance of cannabinoids. Thirty-two high-cannabinoid hemp cultivars were characterized for traits including flowering date and shoot-tip cannabinoid concentration. Additionally, a set of plant architecture traits, as well as wet, dry, and stripped inflorescence biomass were measured at harvest. One plant per plot was partitioned post-harvest to quantify intra-plant variation in inflorescence biomass production and cannabinoid concentration. Some cultivars showed intra-plant variation in cannabinoid concentration, while many had a consistent concentration regardless of canopy position. There was both intra- and inter-cultivar variation in architecture that correlated with intra-plant distribution of inflorescence biomass, and concentration of cannabinoids sampled from various positions within a plant. These relationships among morphological and biochemical traits will inform future decisions by cultivators, regulators, and plant breeders.
Collapse
Affiliation(s)
- George M. Stack
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| | - Craig H. Carlson
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research, CenterUSDA‐ARSFargoNorth DakotaUSA
| | - Jacob A. Toth
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| | - Glenn Philippe
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Jamie L. Crawford
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Julie L. Hansen
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Donald R. Viands
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant ScienceCornell UniversityIthacaNew YorkUSA
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant ScienceCornell University, Cornell AgriTechGenevaNew YorkUSA
| |
Collapse
|
2
|
Mamin M, Vallat A, Turlings TCJ. Cotton plants as ideal models for teaching and research on inducible direct plant defenses. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1119472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Cotton (Gossypium hirsutum) stores defensive compounds in glands covering its leaves and other tissues. The density and the chemical filling of these glands increase systematically in developing leaves in response to herbivory on older leaves. Cotton seedlings are known to respond more strongly to actual caterpillar herbivory than to mere physical damage. It is not clear whether this amplified response is linked to insect-derived elicitors or difference in damage properties. To investigate this, we assessed the effect of repeated artificial damage without and with application of regurgitant from Spodoptera exigua caterpillars. Repeated mechanical damage led to a systemic increase of gland density, gland size, and content of defensive terpenes, with no detectable additional elicitation upon regurgitant treatment. Dual choice feeding assays further showed that defense induction triggered by just physical damage made newly developing leaves far less palatable to S. exigua larvae as compared to leaves from undamaged seedlings, whereas they did not distinguish between leaves from damaged plants treated with or without regurgitant. Our study confirms that the systemic induction of cotton glands is an unspecific response to physical damage, although cotton is known to respond to caterpillar-associated elicitors for other defensive traits. Cotton glands induction can be readily visualized under modest magnification, making the experiments described in this study highly suited to teach chemical ecology and aspects of plant defense theory in practical classes.
Collapse
|
3
|
Sarmah N, Kaldis A, Kalampokis I, Aliferis KA, Voloudakis A, Perdikis D. Metabolomic and Genomic Approach to Study Defense Induction by Nesidiocoris tenuis against Tuta absoluta and Tetranychus urticae in Tomato Plants. Metabolites 2022; 12:metabo12090838. [PMID: 36144242 PMCID: PMC9504375 DOI: 10.3390/metabo12090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The phytophagy of the predator Nesidiocoris tenuis (Hemiptera: Miridae) can trigger defense responses in tomato plants against pests, such as two spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and South American leaf miner Tuta absoluta (Lepidoptera: Gelechiidae). The expression of genes governing Jasmonic Acid (JA) biosynthesis pathway and fluctuations in the levels of underlying metabolites have been rarely studied in mirid-infested plants. In the present study, fifteen 3rd instar nymphs of N.tenuis were caged on each top and lower leaf of tomato plants for 4 d to induce plant defense; after this period the predators were removed. With regard to T. absoluta, oviposition preference; larval period; and pupal weight were significantly reduced in N. tenuis-punctured plants. T. urticae adults exhibited a significantly higher escape tendency and reduced survival on punctured plants. Metabolomics confirmed such observations revealing substantial differences between N. tenuis-punctured and unpunctured (control) plants. Metabolites directly associated with the activation of the JA defense pathway, such as the precursor α-linolenic acid, had increased concentrations. The expression of the defense-related genes PI-II, MYC2, VSP2, and HEL was increased in the top leaves and only VSP2 and MBP2 in the lower leaves; interestingly, in the middle (unpunctured) leaves VSP2, HEL, and MBP2 were also upregulated, indicating systemic signaling. Collectively, phytophagy of N. tenuis caused adverse effects on T. absoluta and T. urticae, whereas the multi-omics approach (phenomics, metabolomics, and genomics) offered valuable insights into the nature of the plant defense responses and provided useful evidence for future applications in integrated pest management, plausibly resulting in the reduction in the required pesticide volumes.
Collapse
Affiliation(s)
- Nomi Sarmah
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis Kalampokis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: ; Tel.: +30-210-529-4581
| |
Collapse
|
4
|
Chen H, Su H, Zhang S, Jing T, Liu Z, Yang Y. Transcriptomic and Metabolomic Responses in Cotton Plant to Apolygus lucorum Infestation. INSECTS 2022; 13:391. [PMID: 35447833 PMCID: PMC9025427 DOI: 10.3390/insects13040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023]
Abstract
With the wide-scale adoption of transgenic Bacillus thuringiensis (Bt) cotton, Apolygus lucorum (Meyer-Dür) has become the most serious pest and has caused extensive yield loss in cotton production. However, little is known about the defense responses of cotton at the seedling stage to A. lucorum feeding. In this study, to elucidate the cotton defense mechanism, cotton leaves were damaged by A. lucorum for 0, 4, 12 and 24 h. The transcriptomic results showed that A. lucorum feeding elicits a rapid and strong defense response in gene expression during the whole infestation process in cotton plants. Further analysis revealed that at each assessment time, more differentially expressed genes were up-regulated than down-regulated. The integrated analysis of transcriptomic and metabolic data showed that most of the genes involved in jasmonic acid (JA) biosynthesis were initially up-regulated, and this trend continued during an infestation. Meanwhile, the content levels of JA and its intermediate products were also significantly increased throughout the whole infestation process. The similar trend was displayed in condensed tannins biosynthesis. This research proved that, after plants are damaged by A. lucorum, the JA pathway mediates the defense mechanisms in cotton plants by promoting the accumulation of condensed tannins as a defense mechanism against A. lucorum. These results will help us to discover unknown defensive genes and improve the integrated pest management of A. lucorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhong Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225007, China; (H.C.); (H.S.); (S.Z.); (T.J.); (Z.L.)
| |
Collapse
|
5
|
Cruz V, Cruz-Pantoja O, Tremblay R, Acevedo M. Animal trait variation at the within-individual level: erythrocyte size variation and malaria infection in a tropical lizard. PeerJ 2022; 10:e12761. [PMID: 35228904 PMCID: PMC8881909 DOI: 10.7717/peerj.12761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
High levels of within-individual variation (WIV) in reiterative components in plants such as leaves, flowers, and fruits have been shown to increase individual fitness by multiple mechanisms including mediating interactions with natural enemies. This relationship between WIV and fitness has been studied almost exclusively in plant systems. While animals do not exhibit conspicuous reiterative components, they have traits that can vary at the individual level such as erythrocyte size. It is currently unknown if WIV in animals can influence individual fitness by mediating the outcome of interactions with natural enemies as it has been shown in plants. To address this issue, we tested for a relationship between WIV in erythrocyte size, hemoparasite infection status, and body condition (a proxy for fitness) in a Caribbean anole lizard. We quantified the coefficient of variation of adult erythrocytes size in $n = 95$ infected and $n = 107$ non-infected lizards. We found higher degrees of erythrocyte size variation in infected lizards than in non-infected individuals. However, we found no significant relationship between infection status or erythrocyte size variation, and lizard body condition. These results suggest that higher WIV in erythrocyte size in infected lizards is not necessarily adaptive but likely a consequence of the host response to infection. Many hemoparasites destroy their host cells as part of their life cycle. To compensate, the host lizard may respond by increasing production of erythrocytes resulting in higher WIV. Our results emphasize the need to better understand the role of within-animal variation as a neglected driver or consequence of ecological and evolutionary interactions.
Collapse
Affiliation(s)
- Virnaliz Cruz
- School of Natural Resources & Environment, University of Florida, Gainesville, FL, United States of America,Department of Environmental Science, Universidad de Puerto Rico, Rio Pidras, Puerto Rico, United States of America
| | - Omar Cruz-Pantoja
- Department of Computer Science, Universidad de Puerto Rico, Recinto de Rio Pidras, San Juan, Puerto Rico, United States of America
| | - Raymond Tremblay
- Department of Biology, Universidad de Puerto Rico, Humacao, Puerto Rico, United States of America
| | - Miguel Acevedo
- School of Natural Resources & Environment, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
6
|
Analysis of leaf morphology, secondary metabolites and proteins related to the resistance to Tetranychus cinnabarinus in cassava (Manihot esculenta Crantz). Sci Rep 2020; 10:14197. [PMID: 32848172 PMCID: PMC7450062 DOI: 10.1038/s41598-020-70509-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/27/2020] [Indexed: 11/10/2022] Open
Abstract
Constitutive resistance of plant can be divided into physical and chemical barriers. Cassava (Manihot esculenta Crantz) is susceptible to mites, especially Tetranychus cinnabarinus. Although significant differences in the resistance to T. cinnabarinus are observed in different cassava cultivars, limited research has been done on the mechanism accounting for the resistance. The aim of this study was to explore the mechanism of resistance to T. cinnabarinus by comparing morphology, secondary metabolites and proteins in different cassava cultivars. The anatomical structure of leaves showed that the cassava cultivar Xinxuan 048 (XX048), which showed a stronger resistance to T. cinnabarinus in both greenhouse testing and three years field evaluation tests (2016–2018), had thicker palisade tissue, spongy tissue, lower epidermis and leaf midrib tissue compared to cultivar Guire 4 (GR4). Greenhouse evaluation demonstrated that originally these cultivars were different, leading to differences in constitutive levels of metabolites. The proteomic analysis of protected leaves in XX048 and GR4 revealed that up-regulated differentially expressed proteins (DEPs) were highly enriched in secondary metabolic pathways, especially in the biosynthesis of flavonoids. This study not only provides a comprehensive data set for overall proteomic changes of leaves in resistant and susceptible cassava, but also sheds light on the morphological characteristics of cassava-mite interaction, secondary metabolite defense responses, and molecular breeding of mite-resistant cassava for effective pest control.
Collapse
|
7
|
Godinho DP, Janssen A, Li D, Cruz C, Magalhães S. The distribution of herbivores between leaves matches their performance only in the absence of competitors. Ecol Evol 2020; 10:8405-8415. [PMID: 32788989 PMCID: PMC7417252 DOI: 10.1002/ece3.6547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/27/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
Few studies have tested how plant quality and the presence of competitors interact in determining how herbivores choose between different leaves within a plant. We investigated this in two herbivorous spider mites sharing tomato plants: Tetranychus urticae, which generally induces plant defenses, and Tetranychus evansi, which suppresses them, creating asymmetrical effects on coinfesting competitors. On uninfested plants, both herbivore species preferred young leaves, coinciding with increased mite performance. On plants with heterospecifics, the mites did not prefer leaves on which they had a better performance. In particular, T. urticae avoided leaves infested with T. evansi, which is in agreement with T. urticae being outcompeted by T. evansi. In contrast, T. evansi did not avoid leaves with the other species, but distributed itself evenly over plants infested with heterospecifics. We hypothesize that this behavior of T. evansi may prevent further spread of T. urticae over the shared plant. Our results indicate that leaf age determines within-plant distribution of herbivores only in absence of competitors. Moreover, they show that this distribution depends on the order of arrival of competitors and on their effects on each other, with herbivores showing differences in behavior within the plant as a possible response to the outcome of those interactions.
Collapse
Affiliation(s)
- Diogo P. Godinho
- cE3c: Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Arne Janssen
- Evolutionary and Population Biology (IBED)University of AmsterdamAmsterdamThe Netherlands
- Department of EntomologyFederal University of ViçosaViçosaBrazil
| | - Dan Li
- Evolutionary and Population Biology (IBED)University of AmsterdamAmsterdamThe Netherlands
| | - Cristina Cruz
- cE3c: Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
8
|
McCoy SJ, Santillán-Sarmiento A, Brown MT, Widdicombe S, Wheeler GL. Photosynthetic Responses of Turf-forming Red Macroalgae to High CO 2 Conditions. JOURNAL OF PHYCOLOGY 2020; 56:85-96. [PMID: 31553063 DOI: 10.1111/jpy.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Seaweeds are important components of near-shore ecosystems as primary producers, foundation species, and biogeochemical engineers. Seaweed communities are likely to alter under predicted climate change scenarios. We tested the physiological responses of three perennial, turf-building, intertidal rhodophytes, Mastocarpus stellatus, Osmundea pinnatifida, and the calcified Ellisolandia elongata, to elevated pCO2 over 6 weeks. Responses varied between these three species. E. elongata was strongly affected by high pCO2 , whereas non-calcified species were not. Elevated pCO2 did not induce consistent responses of photosynthesis and respiration across these three species. While baseline photophysiology differed significantly between species, we found few clear effects of elevated pCO2 on this aspect of macroalgal physiology. We found effects of within-species variation in elevated pCO2 response in M. stellatus, but not in the other species. Overall, our data confirm the sensitivity of calcified macroalgae to elevated pCO2 , but we found no evidence suggesting that elevated pCO2 conditions will have a strong positive or negative impact on photosynthetic parameters in non-calcified macroalgae.
Collapse
Affiliation(s)
- Sophie J McCoy
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, Florida, 32306-4295, USA
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| | - Alex Santillán-Sarmiento
- School of Biological and Marine Sciences, University of Plymouth, 4th Floor Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121, Napoli, Italy
- Faculty of Engineering, National University of Chimborazo, Av. Antonio José de Sucre Km 1 1/2 via Guano, EC 060108, Riobamba, Ecuador
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, 4th Floor Davy Building, Drake Circus, Plymouth, PL4 8AA, UK
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| | - Glen L Wheeler
- Marine Biological Association of the UK, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
9
|
de Fouchier A, Sun X, Caballero-Vidal G, Travaillard S, Jacquin-Joly E, Montagné N. Behavioral Effect of Plant Volatiles Binding to Spodoptera littoralis Larval Odorant Receptors. Front Behav Neurosci 2018; 12:264. [PMID: 30483075 PMCID: PMC6240680 DOI: 10.3389/fnbeh.2018.00264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Phytophagous insects use volatile organic compounds (VOC) emitted by plants to orient towards their hosts. In lepidopteran pests, crop damages are caused by larval stages-the caterpillars-that feed extensively on leaves or other plant tissues. However, larval host plant choice has been poorly studied, and it is generally admitted that caterpillars feed on the plant where the female laid the eggs. The mobility of caterpillars has been generally overlooked even though several studies showed that they can orient towards odors and change host plant. Recently, a large number of odorant receptors (ORs) tuned to plant volatiles have been characterized in the model pest moth Spodoptera littoralis (Noctuidae). In the present work, we identified nine of these deorphanized ORs as expressed in S. littoralis caterpillars. In order to understand whether these ORs are involved in host searching, we tested the behavioral significance of their ligands using a larval two-choice assay. This OR-guided approach led to the identification of nine plant volatiles, namely 1-hexanol, benzyl alcohol, acetophenone, benzaldehyde, (Z)3-hexenol, (E)2-hexenol, indole, DMNT and (Z)3-hexenyl acetate, which are active on S. littoralis caterpillar behavior, increasing our knowledge on larval olfactory abilities. To further explore the link between OR activation and behavioral output induced by plant volatiles we used a modeling approach, thereby allowing identification of some ORs whose activation is related to caterpillar attraction. These ORs may be promising targets for future plant protection strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Montagné
- Institut National de la Recherche Agronomique (INRA), Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Paris and Versailles, France
| |
Collapse
|
10
|
Tsunoda T, Grosser K, Dam NM. Locally and systemically induced glucosinolates follow optimal defence allocation theory upon root herbivory. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tomonori Tsunoda
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Department of Biological SciencesTokyo Metropolitan University Hachioji Tokyo Japan
| | - Katharina Grosser
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiodiversityFriedrich Schiller University Jena Jena Germany
| | - Nicole M. Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Institute of BiodiversityFriedrich Schiller University Jena Jena Germany
| |
Collapse
|
11
|
Silva R, Walter GH, Wilson LJ, Furlong MJ. Effects of single and dual species herbivory on the behavioral responses of three thrips species to cotton seedlings. INSECT SCIENCE 2017; 24:684-698. [PMID: 27029603 DOI: 10.1111/1744-7917.12340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the olfactory responses of 3 thrips species [Frankliniella schultzei Trybom, F. occidentalis Pergrande and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] to cotton seedlings [Gossypium hirsutum L. (Malvales: Malvaceae)] simultaneously damaged by different combinations of herbivores. Cotton seedlings were damaged by foliar feeding Tetranychus urticae Koch (Trombidiforms: Tetranychidae), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), Aphis gossypii Glover (Hemiptera: Aphididae) or root feeding Tenebrio molitor L. (Coleoptera: Tenebrionidae). Thrips responses to plants simultaneously damaged by 2 species of herbivore were additive and equivalent to the sum of the responses of thrips to plants damaged by single herbivore species feeding alone. For example, F. occidentalis was attracted to T. urticae damaged plants but more attracted to undamaged plants than to plants damaged by H. armigera. Plants simultaneously damaged by low densities of T. urticae and H. armigera repelled F. occidentalis but as T. urticae density increased relative to H. armigera density, F. occidentalis attraction to coinfested plants increased proportionally. Thrips tabaci did not discriminate between undamaged plants and plants damaged by H. armigera but were attracted to plants damaged by T. urticae alone or simultaneously damaged by T. urticae and H. armigera. Olfactometer assays showed that simultaneous feeding by 2 herbivores on a plant can affect predator-prey interactions. Attraction of F. occidentalis to plants damaged by its T. urticae prey was reduced when the plant was simultaneously damaged by H. armigera, T. molitor, or A. gossypii and F. schultzei was more attracted to plants simultaneously damaged by T. urticae and H. armigera than to plants damaged by T. urticae alone. We conclude that plant responses to feeding by 1 species of herbivore are affected by responses to feeding by other herbivores. These plant-mediated interactions between herbivore complexes affect the behavioral responses of thrips which vary between species and are highly context dependent.
Collapse
Affiliation(s)
- Rehan Silva
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lewis J Wilson
- Cotton Research Unit, CSIRO Agriculture Flagship, Locked Bag 59, Narrabri, NSW, 2390, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
12
|
Eisenring M, Meissle M, Hagenbucher S, Naranjo SE, Wettstein F, Romeis J. Cotton Defense Induction Patterns Under Spatially, Temporally and Quantitatively Varying Herbivory Levels. FRONTIERS IN PLANT SCIENCE 2017; 8:234. [PMID: 28270830 PMCID: PMC5318428 DOI: 10.3389/fpls.2017.00234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 05/25/2023]
Abstract
In its defense against herbivores, cotton (Gossypium sp.) relies in part on the production of a set of inducible, non-volatile terpenoids. Under uniform damage levels, in planta allocation of induced cotton terpenoids has been found to be highest in youngest leaves, supporting assumptions of the optimal defense theory (ODT) which predicts that plants allocate defense compounds to tissues depending on their value and the likelihood of herbivore attack. However, our knowledge is limited on how varying, and thus more realistic, damage levels might affect cotton defense organization. We hypothesized that the allocation of terpenoids and densities of terpenoid-storing glands in leaves aligns with assumptions of the ODT, even when plants are subjected to temporally, spatially and quantitatively varying caterpillar (Heliothis virescens) damage. As expected, cotton plants allocated most of their defenses to their youngest leaves regardless of damage location. However, defense induction in older leaves varied with damage location. For at least 14 days after damage treatments ended, plants reallocated defense resources from previously young leaves to newly developed leaves. Furthermore, we observed a positive hyperbolic relationship between leaf damage area and both terpenoid concentrations and gland densities, indicating that cotton plants can fine-tune defense allocation. Although it appears that factors like vascular constraints and chemical properties of individual defense compounds can affect defense levels, our results overall demonstrate that induced defense organization of cotton subjected to varying damage treatments is in alignment with key assumptions of the ODT.
Collapse
Affiliation(s)
| | | | | | - Steven E. Naranjo
- United States Department of Agriculture – Agriclutural Research Service, Arid Land Agricultural Research Center, MaricopaAZ, USA
| | | | | |
Collapse
|
13
|
Brütting C, Schäfer M, Vanková R, Gase K, Baldwin IT, Meldau S. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:15-30. [PMID: 27557345 PMCID: PMC5245775 DOI: 10.1111/tpj.13316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/05/2023]
Abstract
Plant defense metabolites are well known to be regulated developmentally. The optimal defense (OD) theory posits that a tssue's fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness value to the plant, and therefore their defense allocations should be higher when compared with older leaves. The mechanisms that coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins (CKs) modulate ontogeny-dependent defenses in Nicotiana attenuata. We found that leaf CK levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different CK classes by using senescence- and chemically inducible expression of CK biosynthesis genes. Genetically modifying the levels of different CKs in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include CKs plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants.
Collapse
Affiliation(s)
- Christoph Brütting
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Martin Schäfer
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Radomira Vanková
- Institute of Experimental Botany AS CR, Laboratory of Hormonal Regulations in Plants, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Klaus Gase
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Ian T. Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
| | - Stefan Meldau
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, Jena 07745, Germany
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, Leipzig 04107, Germany
| |
Collapse
|
14
|
Austen EJ, Forrest JRK, Weis AE. Within-plant variation in reproductive investment: consequences for selection on flowering time. J Evol Biol 2015; 28:65-79. [DOI: 10.1111/jeb.12538] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 11/29/2022]
Affiliation(s)
- E. J. Austen
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| | | | - A. E. Weis
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| |
Collapse
|
15
|
Hagenbucher S, Wäckers FL, Romeis J. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton. PLoS One 2014; 9:e107806. [PMID: 25226521 PMCID: PMC4167187 DOI: 10.1371/journal.pone.0107806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.
Collapse
Affiliation(s)
| | - Felix L. Wäckers
- Centre for Sustainable Agriculture, Lancaster University, Lancaster, United Kingdom
| | - Jörg Romeis
- Agroscope, Institute for Sustainability Sciences (ISS), Zurich, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Miyazaki J, Wilson LJ, Stiller WN. Fitness of twospotted spider mites is more affected by constitutive than induced resistance traits in cotton (Gossypium spp.). PEST MANAGEMENT SCIENCE 2013; 69:1187-97. [PMID: 23553923 DOI: 10.1002/ps.3546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/03/2013] [Accepted: 04/02/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Life history parameters are useful tools for comparing the fitness of pests on different host plants. This study compared life history parameters of twospotted spider mites (Tetranychus urticae Koch) on two resistant cotton Gossypium genotypes (BM13H and Sipima 280) and one susceptible genotype (Sicot 71). The effects of both constitutive and induced defences were assessed. RESULTS Mites reared on the resistant genotypes had longer immature development times, lower immature survival and reduced adult fecundity. Mites reared on BM13H that had been induced by prior exposure to mites had a small additional decrease in adult fecundity. The contribution to mite resistance of constitutive resistance mechanisms was much greater than induced responses. The effect of morphological constitutive defences was minor, implicating biochemical defences as the major mite-resistance mechanism. Sensitivity analysis and a population development study using life history parameters of mites showed that a lower immature survival rate on resistant genotypes had the greatest effect on mite fitness and population development. CONCLUSION Use of life history parameters provided valuable insight into the mite-resistance mechanisms of these Gossypium genotypes. Further, the results largely explained mite population development on these genotypes in the field.
Collapse
Affiliation(s)
- Junji Miyazaki
- CSIRO Plant Industry, Myall Vale, Narrabri, NSW 2390, Australia.
| | | | | |
Collapse
|
17
|
Zakir A, Bengtsson M, Sadek MM, Hansson BS, Witzgall P, Anderson P. Specific response to herbivore-induced de novo synthesized plant volatiles provides reliable information for host plant selection in a moth. ACTA ACUST UNITED AC 2013; 216:3257-63. [PMID: 23737555 DOI: 10.1242/jeb.083188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals depend on reliable sensory information for accurate behavioural decisions. For herbivorous insects it is crucial to find host plants for feeding and reproduction, and these insects must be able to differentiate suitable from unsuitable plants. Volatiles are important cues for insect herbivores to assess host plant quality. It has previously been shown that female moths of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae), avoid oviposition on damaged cotton Gossypium hirsutum, which may mediated by herbivore-induced plant volatiles (HIPVs). Among the HIPVs, some volatiles are released following any type of damage while others are synthesized de novo and released by the plants only in response to herbivore damage. In behavioural experiments we here show that oviposition by S. littoralis on undamaged cotton plants was reduced by adding volatiles collected from plants with ongoing herbivory. Gas chromatography-electroantennographic detection (GC-EAD) recordings revealed that antennae of mated S. littoralis females responded to 18 compounds from a collection of headspace volatiles of damaged cotton plants. Among these compounds, a blend of the seven de novo synthesized volatile compounds was found to reduce oviposition in S. littoralis on undamaged plants under both laboratory and ambient (field) conditions in Egypt. Volatile compounds that are not produced de novo by the plants did not affect oviposition. Our results show that ovipositing females respond specifically to the de novo synthesized volatiles released from plants under herbivore attack. We suggest that these volatiles provide reliable cues for ovipositing females to detect plants that could provide reduced quality food for their offspring and an increased risk of competition and predation.
Collapse
Affiliation(s)
- Ali Zakir
- Department of Plant Protection Biology, Division of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | | | | | | | | | | |
Collapse
|
18
|
Utsumi S. Evolutionary community ecology of plant-associated arthropods in terrestrial ecosystems. Ecol Res 2013. [DOI: 10.1007/s11284-013-1042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Anderson P, Sadek M, Wäckers F. Root herbivory affects oviposition and feeding behavior of a foliar herbivore. Behav Ecol 2011. [DOI: 10.1093/beheco/arr124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Gutbrodt B, Mody K, Wittwer R, Dorn S. Within-plant distribution of induced resistance in apple seedlings: rapid acropetal and delayed basipetal responses. PLANTA 2011; 233:1199-207. [PMID: 21327817 DOI: 10.1007/s00425-011-1371-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/20/2011] [Indexed: 05/11/2023]
Abstract
Induction of plant resistance by herbivory is a complex process, which follows a temporal dynamic and varies spatially at the within-plant scale. This study aimed at improving the understanding of the induction process in terms of time scale and within-plant allocation, using apple tree seedlings (Malus × domestica) as plant model. Feeding preferences of a leaf-chewing insect (Spodoptera littoralis) for previously damaged and undamaged plants were assessed for six different time intervals with respect to the herbivore damage treatment and for three leaf positions. In addition, main secondary defense compounds were quantified and linked to herbivore feeding preferences. Significant herbivore preference for undamaged plants (induced resistance) was first observed 3 days after herbivore damage in the most apical leaf. Responses were delayed in the other leaf positions, and induced resistance decreased within 10 days after herbivore damage simultaneously in all tested leaf positions. Chemical analysis revealed higher concentrations of the flavonoid phloridzin in damaged plants as compared to undamaged plants. This indicates that herbivore preference for undamaged apple plants may be linked to phloridzin, which is the main secondary metabolite of apple leaves. The observed time course and distribution of resistance responses within plants contribute to the understanding of induction processes and patterns, and support the optimal defense theory stating young tissue to be prioritized. Moreover, induced resistance responses occurred also basipetally in leaves below the damage site, which suggests that signaling pathways involved in resistance responses are not unidirectional.
Collapse
Affiliation(s)
- Bettina Gutbrodt
- ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences, Applied Entomology, Schmelzbergstrasse 9/LFO, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
21
|
Eco-evolutionary dynamics in herbivorous insect communities mediated by induced plant responses. POPUL ECOL 2010. [DOI: 10.1007/s10144-010-0253-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Manzaneda AJ, Prasad KVSK, Mitchell-Olds T. Variation and fitness costs for tolerance to different types of herbivore damage in Boechera stricta genotypes with contrasting glucosinolate structures. THE NEW PHYTOLOGIST 2010; 188:464-77. [PMID: 20663059 PMCID: PMC2950872 DOI: 10.1111/j.1469-8137.2010.03385.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Analyses of plant tolerance in response to different modes of herbivory are essential to an understanding of plant defense evolution, yet are still scarce. Allocation costs and trade-offs between tolerance and plant chemical defenses may influence genetic variation for tolerance. However, variation in defenses also occurs for the presence or absence of discrete chemical structures; yet, the effects of intraspecific polymorphisms on tolerance to multiple herbivores have not been evaluated. • Here, in a glasshouse experiment, we investigated the variation for tolerance to different types of herbivore damage, and direct allocation costs, in 10 genotypes of Boechera stricta (Brassicaceae), a wild relative of Arabidopsis, with contrasting foliar glucosinolate chemical structures (methionine-derived glucosinolates vs glucosinolates derived from branched-chain amino acids). • We found significant genetic variation for tolerance to different types of herbivore. Structural variations in the glucosinolate profile did not influence tolerance to damage, but predicted plant fitness. Levels of constitutive and induced glucosinolates varied between genotypes with different structural profiles, but we did not detect any cost of tolerance explaining the genetic variation in tolerance among genotypes. • Trade-offs between plant tolerance to multiple herbivores may not explain the existence of intermediate levels of tolerance to damage in plants with contrasting chemical defensive profiles.
Collapse
Affiliation(s)
- Antonio J Manzaneda
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
23
|
A comparison of antirrhinoside distribution in the organs of two related Plantaginaceae species with different reproductive strategies. J Chem Ecol 2009; 35:1363-72. [PMID: 19949840 DOI: 10.1007/s10886-009-9715-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 11/02/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
A study of two related plants (Antirrhinum majus L. and Linaria vulgaris Mill.) containing the same defensive compound (the iridoid glucoside, antirrhinoside) but with reproductive strategies that differ during ontogeny was undertaken. Young leaves are important to plants due to their higher photosynthetic rates and, therefore, should be better protected with higher concentrations of defensive compounds such as antirrhinoside. Declining concentrations of antirrhinoside as leaves aged was found for A. majus but this was generally not the case for L. vulgaris. Concentrations of antirrhinoside in root tissue were low and constant throughout ontogeny for A. majus whereas for L. vulgaris root levels of antirrhinoside were high during the period when vegetative growth is its sole means of reproduction. Antirrhinoside in L. vulgaris roots declined relative to A. majus roots during budding and flowering. During flowering, significantly less antirrhinoside and relative biomass are devoted to L. vulgaris flowers than in A. majus. While these findings are consistent with Optimal Defense Theory (ODT) further work on the distribution of antirrhinoside and the effect of insect herbivory on plant fitness in other related species is needed.
Collapse
|
24
|
Ballhorn DJ, Kautz S, Heil M, Hegeman AD. Analyzing plant defenses in nature. PLANT SIGNALING & BEHAVIOR 2009; 4:743-745. [PMID: 19820300 PMCID: PMC2801387 DOI: 10.4161/psb.4.8.9088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/22/2009] [Indexed: 06/03/2023]
Abstract
A broad range of chemical plant defenses against herbivores has been studied extensively under laboratory conditions. In many of these cases there is still little understanding of their relevance in nature. In natural systems, functional analyses of plant traits are often complicated by an extreme variability, which affects the interaction with higher trophic levels. Successful analyses require consideration of the numerous sources of variation that potentially affect the plant trait of interest. In our recent study on wild lima bean (Phaseolus lunatus L.) in South Mexico, we applied an integrative approach combining analyses for quantitative correlations of cyanogenic potential (HCNp; the maximum amount of cyanide that can be released from a given tissue) and herbivory in the field with subsequent feeding trials under controlled conditions. This approach allowed us to causally explain the consequences of quantitative variation of HCNp on herbivore-plant interactions in nature and highlights the importance of combining data obtained in natural systems with analyses under controlled conditions.
Collapse
Affiliation(s)
- Daniel J Ballhorn
- Department of General Botany-Plant Ecology, Universität Duisburg-Essen, FB BioGeo, Essen, Germany.
| | | | | | | |
Collapse
|
25
|
Plant–herbivore–carnivore Interactions in Cotton, Gossypium hirsutum: Linking Belowground and Aboveground. J Chem Ecol 2008; 34:1341-8. [DOI: 10.1007/s10886-008-9532-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|
26
|
Radhika V, Kost C, Bartram S, Heil M, Boland W. Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. PLANTA 2008; 228:449-57. [PMID: 18493790 PMCID: PMC2459232 DOI: 10.1007/s00425-008-0749-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 05/19/2023]
Abstract
Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with (13)C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied.
Collapse
Affiliation(s)
- Venkatesan Radhika
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Christian Kost
- Evolutionary Genetics and Microbial Ecology Laboratory, New Zealand Institute for Advanced Study, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Martin Heil
- Dept. de Ing. Genética, CINVESTAV, Irapuato. Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Apartado Postal 629, 36821 Irapuato, Guanajuato México
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
27
|
Gómez S, Onoda Y, Ossipov V, Stuefer JF. Systemic induced resistance: a risk-spreading strategy in clonal plant networks? THE NEW PHYTOLOGIST 2008; 179:1142-1153. [PMID: 18627496 DOI: 10.1111/j.1469-8137.2008.02542.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Clonal plant networks consist of interconnected individuals (ramets) of different sizes and ages. They represent heterogeneous ramet assemblages with marked differences in quality and attractiveness for herbivores. Here, feeding preferences of a generalist herbivore (Spodoptera exigua) for differently-aged ramets of Trifolium repens were studied, and changes in herbivore preference in response to systemic defense induction were investigated. Dual-choice tests were used to assess the preference of herbivores for young versus mature ramets of induced and uninduced plants, respectively. Additionally, leaf traits related to nutrition, biomechanics and chemical defense were measured to explain variation in tissue quality and herbivore preference. Young ramets were heavily damaged in control plants. After systemic defense induction, damage on young ramets was greatly reduced, while damage on mature ramets increased slightly. Defense induction increased leaf strength and thickness, decreased leaf soluble carbohydrates and substantially changed phenolic composition of undamaged ramets connected to attacked individuals. Systemic induced resistance led to a more dispersed feeding pattern among ramets of different ages. It is proposed that inducible defense acts as a risk-spreading strategy in clonal plants by equalizing herbivore preference within the clone, thereby avoiding extended selective feeding on valuable plant tissues.
Collapse
Affiliation(s)
- Sara Gómez
- Experimental Plant Ecology, Radboud University Nijmegen, Nijmegen, Netherlands
- Present address: Biology, Tufts University, Medford, MA, USA
| | - Yusuke Onoda
- Plant Ecology and Biodiversity, Utrecht University, Utrecht, Netherlands
| | | | - Josef F Stuefer
- Experimental Plant Ecology, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
28
|
Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 2007; 10:490-8. [PMID: 17498148 DOI: 10.1111/j.1461-0248.2007.01043.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant volatiles play important roles in signalling between plants and insects, but their role in communication among plants remains controversial. Previous research on plant-plant communication has focused on interactions between neighbouring plants, largely overlooking the possibility that volatiles function as signals within plants. Here, we show that volatiles released by herbivore-wounded leaves of hybrid poplar (Populus deltoides x nigra) prime defences in adjacent leaves with little or no vascular connection to the wounded leaves. Undamaged leaves exposed to volatiles from wounded leaves on the same stem had elevated defensive responses to feeding by gypsy moth larvae (Lymantria dispar L.) compared with leaves that did not receive volatiles. Volatile signals may facilitate systemic responses to localized herbivory even when the transmission of internal signals is constrained by vascular connectivity. Self-signalling via volatiles is consistent with the short distances over which plant response to airborne cues has been observed to occur and has apparent benefits for emitting plants, suggesting that within-plant signalling may have equal or greater ecological significance than signalling between plants.
Collapse
Affiliation(s)
- Christopher J Frost
- Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|