1
|
Borkenhagen A, Cooper DJ, House M, Vitt DH. Establishing peat-forming plant communities: A comparison of wetland reclamation methods in Alberta's oil sands region. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2929. [PMID: 37942503 DOI: 10.1002/eap.2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
The Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post-mining landscape. To identify effective approaches for establishing peat-forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis-dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat-forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%-160% cover respectively) occurred where the summer water level was between -10 and -40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat-forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.
Collapse
Affiliation(s)
- Andrea Borkenhagen
- Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Cooper
- Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Melissa House
- School of Biological Sciences-Plant Biology, Southern Illinois University, Carbondale, Illinois, USA
| | - Dale H Vitt
- School of Biological Sciences-Plant Biology, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
2
|
Zheng J, Arif M, Zhang S, Yuan Z, Zhang L, Li J, Ding D, Li C. Dam inundation simplifies the plant community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149827. [PMID: 34467924 DOI: 10.1016/j.scitotenv.2021.149827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/20/2023]
Abstract
The construction of dams has caused riparian habitat degradation and ecosystem service loss globally. It is critical to assess the response of riparian plant communities to inundation gradients for their conservation. Recent evidence suggests that plant community assemblages are governed by flooding stress, soil nutrient availability, climate (environmental filtering) and dispersal, speciation, local extinction (dispersal filtering), but it remains unclear which dominates the riparian ecosystem regulated by a dam. Thus, this article aims to elucidate the relative importance of environmental and dispersal filtering to variations in plant communities to understand community assembly mechanisms in riparian ecosystems. Here we used plant community data related to four elevations in the riparian zone of the Three Gorges Dam Reservoir in China to show that species richness and diversity, community height, and the cover of total, annual, and exotic plant categories decreased, while the cover of perennial and native plant groups increased under higher flooding stress. Community composition varied substantially with elevation, and species composition tended to converge with increased inundation, characterized by flood-tolerant species. The community composition underwent stronger environmental filtering at low elevations and stronger dispersal filtering at high elevations, with stronger environmental filtering across riparian ecosystems. Therefore, we conclude that dam inundation drives community assemblages of riparian plants by the combined effects of environmental and dispersal filtering. Still, their relative contribution varies between elevations, and environmental filtering is more important in shaping community assembly. This study is the first to confirm that plant community assembly in the dam-regulated riparian area is determined by both niche-based and stochastic processes. Thus, we highlighted the importance of considering inundation intensity, propagule sources, and river connectivity when implementing restoration projects.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Songlin Zhang
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Zhongxun Yuan
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Limiao Zhang
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Jiajia Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Dongdong Ding
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, College of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Adler PB, Smull D, Beard KH, Choi RT, Furniss T, Kulmatiski A, Meiners JM, Tredennick AT, Veblen KE. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol Lett 2018; 21:1319-1329. [PMID: 29938882 DOI: 10.1111/ele.13098] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/11/2018] [Accepted: 05/16/2018] [Indexed: 01/27/2023]
Abstract
Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra- and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five-fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra- and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.
Collapse
Affiliation(s)
- Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Danielle Smull
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Karen H Beard
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Ryan T Choi
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Tucker Furniss
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Andrew Kulmatiski
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Joan M Meiners
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew T Tredennick
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Kari E Veblen
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
4
|
Suter M, Connolly J, Finn JA, Loges R, Kirwan L, Sebastià MT, Lüscher A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. GLOBAL CHANGE BIOLOGY 2015; 21:2424-38. [PMID: 25626994 DOI: 10.1111/gcb.12880] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/17/2014] [Accepted: 01/09/2015] [Indexed: 05/26/2023]
Abstract
Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self-sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental-scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot ) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix ) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 -fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one-third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one-third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix /Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix /Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.
Collapse
Affiliation(s)
- Matthias Suter
- Institute for Sustainability Sciences ISS, Agroscope, Reckenholzstrasse, 8046 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Geijzendorffer I, van der Werf W, Bianchi F, Schulte R. Sustained dynamic transience in a Lotka–Volterra competition model system for grassland species. Ecol Modell 2011. [DOI: 10.1016/j.ecolmodel.2011.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Suter M, Ramseier D, Connolly J, Edwards PJ. Species identity and negative density dependence lead to convergence in designed plant mixtures of twelve species. Basic Appl Ecol 2010. [DOI: 10.1016/j.baae.2010.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Petermann JS, Fergus AJF, Roscher C, Turnbull LA, Weigelt A, Schmid B. Biology, chance, or history? The predictable reassembly of temperate grassland communities. Ecology 2010; 91:408-21. [PMID: 20392006 DOI: 10.1890/08-2304.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many studies have examined invasion resistance in plant communities, but few have explored the mechanisms of invasion and how subsequent community reassembly affects community functioning. Using natural dispersal and deliberate seed addition into grassland communities with different compositional and richness histories, we show that invaders establish in a nonrandom manner due to negative effects of resident functional groups on invading species from the same functional group. Invaders hence complement communities with originally low richness levels. Consequently, communities converge toward similar levels of species richness, high functional richness, and evenness, but not always maximum productivity. Invasion processes are faster but qualitatively similar when the effect of chance, in the form of dispersal stochasticity, is reduced by seed addition. Thus, dispersal limitation may influence community assembly, but it does not override functionally predictable assembly mechanisms. Some of the most productive communities prior to invasion are unstable in the face of invasion, leading to decreased productivity following invasion. We suggest that invasion into such communities occurs possibly because a pathogen-free niche is available rather than a resource niche. Thus, pathogens in addition to resource niches may be important biological drivers of community assembly.
Collapse
Affiliation(s)
- Jana S Petermann
- Institute of Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
Altered resource availability and the population dynamics of tree species in Amazonian secondary forests. Oecologia 2009; 162:923-34. [PMID: 19997929 DOI: 10.1007/s00442-009-1524-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.
Collapse
|
9
|
Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J Appl Ecol 2009. [DOI: 10.1111/j.1365-2664.2009.01653.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|