1
|
Tomita KM, Matsuyama H. Cleaning Interactions Between Crows and Sika Deer: Implications for Tick-Borne Disease Management. Ecol Evol 2025; 15:e70845. [PMID: 39911412 PMCID: PMC11795058 DOI: 10.1002/ece3.70845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025] Open
Abstract
Cleaning interactions between mammals and birds have been widely observed worldwide. Here, we report cleaning interactions between sika deer and crows in Japan, based on a field observations using camera traps and online research. Online research was performed on social media platforms such as X (formerly Twitter), YouTube, and personal blogs. We finally collected 27 cases of cleaning associations between sika deer and crows. Crows associated with male more than female deer and mainly pecked their heads or necks, suggesting that crows remove Ixodid ticks from the deer's surface. Given that ticks on sika deer are vectors of several zoonotic pathogens such as Rickettsia and Borrelia spp., further studies should be conducted to examine the roles of crows as biocontrol agents of ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Kanzi M. Tomita
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Hiroyuki Matsuyama
- Department of Infectious DiseasesHokkaido Institute of Public HealthSapporoHokkaidoJapan
| |
Collapse
|
2
|
Liu P, Li G, Zhao N, Liu Q, Liu X, Song X, Shi X, Lun X, Zhang L, Wang J, Lu L. Climate heterogeneity, season variation, and sexual dimorphism modulate the association between MHC II diversity and parasite variation in striped hamster. Integr Zool 2024; 19:1181-1198. [PMID: 38084399 DOI: 10.1111/1749-4877.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Parasite-mediated selection is widely believed to play a crucial role in maintaining the diversity of the major histocompatibility complex (MHC) genes, which is thought to be maintained through heterozygote advantage, rare-allele advantage, and fluctuating selection. However, the relationship between parasite pressure and MHC diversity has yielded inconsistent findings. These inconsistencies may arise from the influence of environmental factors and individual variations in traits on host-parasite interactions. To address these issues, our study extensively investigated populations of striped hamsters inhabiting regions characterized by environmental heterogeneity. The primary objective was to examine the universality of parasite-mediated selection mechanisms. Our observations revealed the presence of multiple parasite infections, accompanied by spatial and temporal variations in parasite communities and infection patterns among individual hamsters. Specifically, the temperature was found to influence all four parasite indices, while the presence of gamasid mites and parasite richness decreased with increasing precipitation. We also noted significant seasonal variation in parasite dynamics. Moreover, a significant sexual dimorphism was observed with males exhibiting a considerably higher parasite burden compared to their female counterparts. Lastly, we identified the maintenance of MHC polymorphism in striped hamsters as being driven by the heterozygote advantage and fluctuating selection mechanisms. This study underscores the significance of ecological processes in comprehending host-parasite systems and highlights the necessity of considering environmental factors and individual traits when elucidating the mechanisms underlying MHC diversity mediated by parasites.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinfei Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchang Lun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
van Beest FM, Petersen HH, Krogh AK, Frederiksen ML, Schmidt NM, Hansson SV. Estimating parasite-condition relationships and potential health effects for fallow deer ( Dama dama) and red deer ( Cervus elaphus) in Denmark. Int J Parasitol Parasites Wildl 2023; 21:143-152. [PMID: 37215531 PMCID: PMC10196918 DOI: 10.1016/j.ijppaw.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Parasites can exert a substantial influence on the ecology of wildlife populations by altering host condition. Our objectives were to estimate single and multiparasite-condition relationships for fallow deer (Dama dama) and red deer (Cervus elaphus) in Denmark and to assess potential health effects along the parasite burden gradient. Fallow deer hosted on average two endoparasite taxa per individual (min = 0, max = 5) while red deer carried on average five parasite taxa per individual (min = 2, max = 9). Body condition of both deer species was negatively related to presence of Trichuris ssp. eggs while body condition of red deer was positively related to antibodies of the protozoan Toxoplasma gondii. For the remaining parasite taxa (n = 12), we either found weak or no apparent association between infection and deer body condition or low prevalence levels restricted formal testing. Importantly, we detected a strong negative relationship between body condition and the sum of endoparasite taxa carried by individual hosts, a pattern that was evident in both deer species. We did not detect systemic inflammatory reactions, yet serology revealed reduced total protein and iron concentrations with increased parasite load in both deer species, likely due to maldigestion of forage or malabsorption of nutrients. Despite moderate sample sizes, our study highlights the importance of considering multiparasitism when assessing body condition impacts in deer populations. Moreover, we show how serum chemistry assays are a valuable diagnostic tool to detect subtle and sub-clinical health impacts of parasitism, even at low-level infestation.
Collapse
Affiliation(s)
- Floris M. van Beest
- Department of Ecoscience, Aarhus University, Frederiksborgvej, 399, 4000, Roskilde, Denmark
| | - Heidi H. Petersen
- Center for Diagnostics, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Anne K.H. Krogh
- Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægevej 16, 1870, Frederiksberg, Denmark
| | | | - Niels M. Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej, 399, 4000, Roskilde, Denmark
| | - Sophia V. Hansson
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Ave. de l'Agrobiopole, 31326 Castanet Tolosan, France
| |
Collapse
|
4
|
Low impact of tuberculosis severity on wild boar body condition. Res Vet Sci 2023; 155:161-167. [PMID: 36706665 DOI: 10.1016/j.rvsc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Abstract
Body condition (BC), is a measure to assess the health status of domestic and wild animals. When food resources are abundant, a decrease in BC may indicate an increase in the energetic expenditure due to the effects of growth, reproduction, or disease. BC impoverishment is one of the most common clinical effects of diseases progressing chronically, such as animal tuberculosis (TB) caused by bacteria belonging to the Mycobacterium tuberculosis complex. The Eurasian wild boar (Sus scrofa) is the main wild TB reservoir in the Mediterranean basin. The specific aims of this work were to assess the relationship between sex, age and TB severity altogether on the BC of wild boar. For this purpose, we used the kidney fat index (KFI), to assess the impact of TB progression on the BC of 1372 hunter-harvested free-ranging wild boar in seven populations in southern Spain. Surprisingly, TB had only slight effects on wild boar BC and individuals exhibiting severe TB showed greater BC than TB-free individuals. The age (adults had greater BC than juveniles) and sex (females had greater BC than males) were the main BC determinants in wild boar. Sampling population and season explained more BC variability than individual factors, suggesting that other external factors might play an important role in the BC, and probably on the impact of the disease on this wild reservoir. The low impact of TB on wild boar BC suggests that individuals with severe TB and good BC represent potential long-term super-shedders of this pathogen.
Collapse
|
5
|
Barroso P, Acevedo P, Risalde MA, García-Bocanegra I, Montoro V, Martínez-Padilla AB, Torres MJ, Soriguer RC, Vicente J. Co-exposure to pathogens in wild ungulates from Doñana National Park, South Spain. Res Vet Sci 2023; 155:14-28. [PMID: 36608374 DOI: 10.1016/j.rvsc.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Multiple infections or co-exposure to pathogens should be considered systematically in wildlife to better understand the ecology and evolution of host-pathogen relationships, so as to better determine the potential use of multiple pathogens as indicators to guide health management. We describe the pattern of co-exposure to several pathogens (i.e. simultaneous positive diagnosis to pathogens in an individual considering Mycobacterium tuberculosis complex lesions, and the presence of antibodies against Toxoplasma gondii, bluetongue virus, and hepatitis E virus) and assessed their main drivers in the wild ungulate community from Doñana National Park (red deer, fallow deer, and wild boar) for a 13-years longitudinal study. The lower-than-expected frequency of co-exposure registered in all species was consistent with non-mutually exclusive hypotheses (e.g. antagonism or disease-related mortality), which requires further investigation. The habitat generalist species (red deer and wild boar) were exposed to a greater diversity of pathogens (frequency of co-exposure around 50%) and/or risk factors than fallow deer (25.0% ± CI95% 4.9). Positive relationships between pathogens were evidenced, which may be explained by common risk factors favouring exposure. The specific combination of pathogens in individuals was mainly driven by different groups of factors (individual, environmental, stochastic, and populational), as well as its interaction, defining a complex eco-epidemiological landscape. To deepen into the main determinants and consequences of co-infections in a complex assemblage of wild hosts, and at the interface with humans and livestock, there also is needed to expand the range of pathogens and compare diverse assemblages of hosts under different environmental and management circumstances.
Collapse
Affiliation(s)
- Patricia Barroso
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain.
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain
| | - María A Risalde
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Vidal Montoro
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, 13071 Ciudad Real, Spain
| | | | - María J Torres
- Departamento de Microbiología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ramón C Soriguer
- Estación Biológica Doñana, CSIC, 41092 Seville, Spain; Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP). Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Carpio Camargo AJ, Barasona J, Acevedo P, Fierro Y, Gortazar C, Vigal C, Moreno Á, Vicente J. Assessing red deer hunting management in the Iberian Peninsula: the importance of longitudinal studies. PeerJ 2021; 9:e10872. [PMID: 33604198 PMCID: PMC7869667 DOI: 10.7717/peerj.10872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the dynamics of a wildlife population in relation to hunting strategies is essential to achieve sustainable management. We used monitoring data over 25 years from two red deer (Cervus elaphus) populations with different management (with and without supplemental feeding) in South Central Spain to: (i) characterise the density dependence of population dynamics under contrasted management, and (ii) provide the basis for sustainable extraction by considering the theoretical maximum sustainable yield (MSYt) as the reference. The red deer population displayed a typical management reactive culling approach ('saw-tooth-like' curves), with occasional strong annual harvests but not occurring on a regular basis. Interestingly, we found reduced population growth at high densities in both populations, indicating that density-mediated factors determined population growth even when artificial feeding was provided. However, no effects of sex not age class of the extracted population on the population growth rate were determined. The total number of animals hunted was only slightly above those predicted by MSYt (i.e. K 50%) in both populations, despite high densities close to theoretical K, being consistent throughout the study period. The extraction rates (30.3 and 34.0%, for supplemented and unsupplemented populations, respectively) were 13.3% and 10.2% lower compared to the MSYt situation in the unsupplemented and supplemented populations, respectively. Long term population monitoring data provided feasible and suitable baseline values to optimise the sustainable exploitation of red deer populations in the Mediterranean ecosystem under these contrasting management scenarios. Adaptive management, involving objective-driven decision making informed by data on red deer population dynamic, can contribute (i) to maximising the total extraction over the long term while (ii) reducing the ecological impact of high population densities.
Collapse
Affiliation(s)
- Antonio José Carpio Camargo
- Department of Zoology, University of Córdoba, Córdoba, Spain.,SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Jose Barasona
- VISAVET Health Surveillance Centre, Department of Animal Health, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Pelayo Acevedo
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carlos Vigal
- Los Quintos de Mora, Organismo Autónomo de Parques Nacionales, Toledo, Spain
| | - Ángel Moreno
- Los Quintos de Mora, Organismo Autónomo de Parques Nacionales, Toledo, Spain
| | - Joaquin Vicente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| |
Collapse
|
8
|
French AS, Zadoks RN, Skuce PJ, Mitchell G, Gordon-Gibbs DK, Taggart MA. Habitat and host factors associated with liver fluke (Fasciola hepatica) diagnoses in wild red deer (Cervus elaphus) in the Scottish Highlands. Parasit Vectors 2019; 12:535. [PMID: 31718680 PMCID: PMC6852960 DOI: 10.1186/s13071-019-3782-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Red deer (Cervus elaphus) are a common wild definitive host for liver fluke (Fasciola hepatica) that have been the subject of limited diagnostic surveillance. This study aimed to explore the extent to which coprological diagnoses for F. hepatica in red deer in the Scottish Highlands, Scotland, are associated with variability among hosts and habitats. METHODS Our analyses were based on coproantigen ELISA diagnoses derived from faecal samples that were collected from carcasses of culled deer on nine hunting estates during two sampling seasons. Sampling locations were used as centroids about which circular home ranges were quantified. Data were stratified by season, and associations between host, hydrological, land cover and meteorological variables and binary diagnoses during 2013-2014 (n = 390) were explored by mixed effect logistic regression. The ability of our model to predict diagnoses relative to that which would be expected by chance was quantified, and data collected during 2012-2013 (n = 289) were used to assess model transferability. RESULTS During 2013-2014, habitat and host characteristics explained 28% of variation in diagnoses, whereby half of the explained variation was attributed to differences among estates. The probability of a positive diagnosis was positively associated with the length of streams in the immediate surroundings of each sampling location, but no non-zero relationships were found for land cover or lifetime average weather variables. Regardless of habitat, the probability of a positive diagnosis remained greatest for males, although males were always sampled earlier in the year than females. A slight decrease in prediction efficacy occurred when our model was used to predict diagnoses for out-of-sample data. CONCLUSIONS We are cautious to extrapolate our findings geographically, owing to a large proportion of variation attributable to overarching differences among estates. Nevertheless, the temporal transferability of our model is encouraging. While we did not identify any non-zero relationship between meteorological variables and probability of diagnosis, we attribute this (in part) to limitations of interpolated meteorological data. Further study into non-independent diagnoses within estates and differences among estates in terms of deer management, would improve our understanding of F. hepatica prevalence in wild deer.
Collapse
Affiliation(s)
- Andrew S French
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, KW14 7JD, UK. .,Marine Institute, Furnace, Newport, Co. Mayo, Ireland.
| | - Ruth N Zadoks
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK.,Sydney School of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia
| | - Philip J Skuce
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Gillian Mitchell
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | | | - Mark A Taggart
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, KW14 7JD, UK
| |
Collapse
|
9
|
Host Richness Increases Tuberculosis Disease Risk in Game-Managed Areas. Microorganisms 2019; 7:microorganisms7060182. [PMID: 31238502 PMCID: PMC6617309 DOI: 10.3390/microorganisms7060182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Current scientific debate addresses whether species richness in animal communities may negatively moderate pathogen transmission and disease outcome (dilution effect), or to the contrary, if disease emergence benefits from more diverse community assemblages (amplification effect). The result may not depend exclusively on patterns of host species biodiversity but may depend on the specific composition of reservoir hosts and vectors, and their ecology. Host–pathogen interactions have shaped variations in parasite virulence, transmissibility and specificity. In the same way the importance of factors related to host exposure or to life history trade-offs are expected to vary. In this study, we demonstrate that ungulate host species richness correlates with increased community competence to maintain and transmit pathogens of the Mycobacterium tuberculosis complex (MTC) in game-managed areas in Mediterranean Spain. Therefore, we should consider natural and artificial variations in life histories of pathogens and host communities to characterize the impact of biodiversity on the health of diverse assemblages of human and animal communities. Since most approaches assessing epidemiology and transmission of shared pathogens only involve single- or pair-species, further research is needed to better understand the infection dynamics from complete community assemblages, at least in chronic diseases such as tuberculosis and in non-natural animal communities.
Collapse
|
10
|
Albery GF, Kenyon F, Morris A, Morris S, Nussey DH, Pemberton JM. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa. Parasitology 2018; 145:1410-1420. [PMID: 29519265 PMCID: PMC6137381 DOI: 10.1017/s0031182018000185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/03/2022]
Abstract
Parasitism in wild mammals can vary according to myriad intrinsic and extrinsic factors, many of which vary seasonally. However, seasonal variation in parasitism is rarely studied using repeated samples from known individuals. Here we used a wild population of individually recognized red deer (Cervus elaphus) on the Isle of Rum to quantify seasonality and intrinsic factors affecting gastrointestinal helminth parasitism over the course of a year. We collected 1020 non-invasive faecal samples from 328 known individuals which we then analysed for propagules of three helminth taxa: strongyle nematodes, the common liver fluke Fasciola hepatica and the tissue nematode Elaphostrongylus cervi. Zero-inflated Poisson models were used to investigate how season, age and sex were associated with parasite prevalence and count intensity, while Poisson models were used to quantify individual repeatability within and between sampling seasons. Parasite intensity and prevalence varied according to all investigated factors, with opposing seasonality, age profiles and sex biases between parasite taxa. Repeatability was moderate, decreased between seasons and varied between parasites; both F. hepatica and E. cervi showed significant between-season repeatability, while strongyle nematode counts were only repeatable within-season and showed no repeatability within individuals across the year.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Fiona Kenyon
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Alison Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sean Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Daniel H. Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
11
|
Hwang J, Gottdenker NL, Oh DH, Nam HW, Lee H, Chun MS. Disentangling the link between supplemental feeding, population density, and the prevalence of pathogens in urban stray cats. PeerJ 2018; 6:e4988. [PMID: 29967720 PMCID: PMC6022734 DOI: 10.7717/peerj.4988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/26/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Supplemental feeding of free-roaming animals, including wildlife and feral or stray animals, is well known to have a substantial impact on various aspects of animal ecology including habitat use, activity patterns, and host-pathogen interactions. Among them, an increased population density (PD) of animals receiving supplemental food raises concerns regarding the transmission of pathogens in these host populations. The primary aim of this study was to investigate how supplemental feeding is associated with host PD and prevalence of pathogens with different transmission modes in urban stray cats. We hypothesized that supplemental feeding would be positively associated with host PD and the prevalence of pathogens with density-dependent transmission modes compared with pathogens with transmission modes that are considered relatively density-independent. METHODS This study was conducted in six districts in Seoul, Republic of Korea which were selected based on different degrees of supplemental feeding and cat caretaker activity (CCA). The PD of stray cats was estimated by mark-recapture surveys. Stray cat blood samples (N = 302) were collected from stray cats by local animal hospitals from each district performing the trap-neuter-release which tested for eight pathogens with different transmission modes (feline immunodeficiency virus, feline leukemia virus (FeLV), feline panleukopenia virus, feline calicivirus, feline herpesvirus-1, Bartonella henselae, hemoplasma, and Toxoplasma gondii) with molecular or serological assays. Associations between the prevalence of each pathogen and PD, CCA, and sex of cats were statistically analyzed. RESULTS In contrast to initial predictions, the cat PD was generally higher in low CCA districts. The prevalence of (FeLV), which is transmitted through direct contact, was significantly higher in areas with a high CCA, conforming to our hypothesis. On the other hand, the prevalence of feline parvovirus, which can be spread by environmental transmission, was higher in low CCA districts. The remaining six pathogens did not show any association with the CCA; however, they had a unique association with the PD or the sex of the stray cats. DISCUSSION Our findings suggest that in addition to influencing the PD, supplemental feeding may affect the prevalence of pathogens in urban animals by mechanisms such as increased aggregation and/or altered foraging strategies, with different consequences depending on the transmission mode of each pathogen.
Collapse
Affiliation(s)
- Jusun Hwang
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Veterinary Pathology, University of Georgia, Athens, GA, USA
| | | | - Dae-Hyun Oh
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ho-Woo Nam
- Parasitic Disease Research Institute, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Hang Lee
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Myung-Sun Chun
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Becker DJ, Streicker DG, Altizer S, Derryberry E. Using host species traits to understand the consequences of resource provisioning for host-parasite interactions. J Anim Ecol 2018; 87:511-525. [PMID: 29023699 PMCID: PMC5836909 DOI: 10.1111/1365-2656.12765] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Supplemental food provided to wildlife by human activities can be more abundant and predictable than natural resources, and subsequent changes in wildlife ecology can have profound impacts on host-parasite interactions. Identifying traits of species associated with increases or decreases in infection outcomes with resource provisioning could improve assessments of wildlife most prone to disease risks in changing environments. We conducted a phylogenetic meta-analysis of 342 host-parasite interactions across 56 wildlife species and three broad taxonomic groups of parasites to identify host-level traits that influence whether provisioning is associated with increases or decreases in infection. We predicted dietary generalists that capitalize on novel food would show greater infection in provisioned habitats owing to population growth and food-borne exposure to contaminants and parasite infectious stages. Similarly, species with fast life histories could experience stronger demographic and immunological benefits from provisioning that affect parasite transmission. We also predicted that wide-ranging and migratory behaviours could increase infection risks with provisioning if concentrated and non-seasonal foods promote dense aggregations that increase exposure to parasites. We found that provisioning increased infection with bacteria, viruses, fungi and protozoa (i.e. microparasites) most for wide-ranging, dietary generalist host species. Effect sizes for ectoparasites were also highest for host species with large home ranges but were instead lowest for dietary generalists. In contrast, the type of provisioning was a stronger correlate of infection outcomes for helminths than host species traits. Our analysis highlights host traits related to movement and feeding behaviour as important determinants of whether species experience greater infection with supplemental feeding. These results could help prioritize monitoring wildlife with particular trait profiles in anthropogenic habitats to reduce infectious disease risks in provisioned populations.
Collapse
Affiliation(s)
- Daniel J. Becker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGAUSA
| | - Daniel G. Streicker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Sonia Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGAUSA
| | | |
Collapse
|
13
|
Oja R, Velström K, Moks E, Jokelainen P, Lassen B. How does supplementary feeding affect endoparasite infection in wild boar? Parasitol Res 2017; 116:2131-2137. [PMID: 28526990 DOI: 10.1007/s00436-017-5512-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 01/22/2023]
Abstract
Supplementary feeding is widely used in game management but may aid the transmission of parasites. Firstly, feeding sites attract animals and may be regarded as high-risk areas for parasite transmission. Secondly, high host population densities resulting from and supported by supplementary feeding, as well as accumulation of parasites in the environment, may increase parasite prevalence. Our aim was to investigate whether host density or the number of feeding sites drives endoparasite infection in an Estonian wild boar (Sus scrofa) population. For this, we collected wild boar faeces from forests, and soil samples from supplementary feeding sites in central and south-eastern Estonia. The role of host density and number of feeding sites on both the risk and mean abundance of endoparasite infection was modelled using generalized linear models (GLM). The presence of biohelminths in faecal samples was associated with both wild boar and feeding site density, whereas the presence of Eimeria sp. oocysts in faecal samples was only associated with wild boar density. Helminth eggs were found more often from the soil of active and abandoned feeding sites than from control areas. This could reflect parasitic contamination or indicate that supplementary feeding sites are suitable habitat for soil-dwelling nematodes. These results suggest that the effects of supplementary feeding on parasite prevalence in wild boar are mediated by the characteristics of parasite life cycles.
Collapse
Affiliation(s)
| | - Kaisa Velström
- Department of Basic Veterinary Sciences and Population Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Epp Moks
- University of Tartu, Tartu, Estonia.
| | - Pikka Jokelainen
- Department of Basic Veterinary Sciences and Population Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
- University of Helsinki, Helsinki, Finland
- Statens Serum Institut, Copenhagen, Denmark
| | - Brian Lassen
- Department of Basic Veterinary Sciences and Population Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
14
|
Gortázar C, Ruiz-Fons JF, Höfle U. Infections shared with wildlife: an updated perspective. EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Digging for answers: contributions of density- and frequency-dependent factors on ectoparasite burden in a social mammal. Oecologia 2015; 180:429-38. [DOI: 10.1007/s00442-015-3494-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
16
|
Hämäläinen A, Raharivololona B, Ravoniarimbinina P, Kraus C. Host sex and age influence endoparasite burdens in the gray mouse lemur. Front Zool 2015; 12:25. [PMID: 26435728 PMCID: PMC4591582 DOI: 10.1186/s12983-015-0118-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/17/2015] [Indexed: 11/24/2022] Open
Abstract
Introduction Immunosenescence (deteriorating immune function at old age) affects humans and laboratory animals, but little is known about immunosenescence in natural populations despite its potential importance for population and disease dynamics and individual fitness. Although life histories and immune system profiles often differ between the sexes, sex-specific effects of aging on health are rarely studied in the wild. Life history theory predicts that due to their shorter lifespan and higher investment into reproduction at the expense of immune defences, males might experience accelerated immunosenescence. We tested this hypothesis by examining sex-specific age trajectories of endoparasite burden (helminth prevalence and morphotype richness measured via fecal egg counts), an indicator of overall health, in wild gray mouse lemurs (Microcebus murinus). To account for potential interactions between seasonality and host sex or age we examined the predictors of parasite burdens separately for the dry and rainy season. Results Contrary to the prediction of immunosenescence, parasite prevalence and morphotype richness decreased at old age in the dry season, indicating acquired immunity by older animals. This pattern was primarily caused by within-individual decline in parasite loads rather than the earlier mortality of highly parasitized individuals. With the exception of an increasing cestode prevalence in males from yearlings to prime age in the rainy season, no evidence was found of male-biased ageing in parasite resistance. Besides this sex*age interaction, host age was uncorrelated with rainy season parasite loads. Seasonality did not affect the overall parasite loads but seasonal patterns were found in the predictors of parasite prevalence and morphotype richness. Conclusions These results provide rare information about the age-related patterns of health in a wild vertebrate population and suggest improvement rather than senescence in the ability to resist helminth infections at old age. Overall, males appear not to suffer from earlier immunosenescence relative to females. This may partially reflect the earlier mortality of males, which can render senescence difficult to detect. While helminth infections are not strongly associated with survival in wild gray mouse lemurs, parasite load may, however, reflect overall good phenotypic quality of long-lived individuals, and is a potential correlate of fitness. Electronic supplementary material The online version of this article (doi:10.1186/s12983-015-0118-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anni Hämäläinen
- Department of Sociobiology/Anthropology, Georg-August University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany ; Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany ; Current address: Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Brigitte Raharivololona
- Department of Paleontology and Biological Anthropology, University of Antananarivo, Antananarivo, Madagascar
| | | | - Cornelia Kraus
- Department of Sociobiology/Anthropology, Georg-August University of Göttingen, Kellnerweg 6, 37077 Göttingen, Germany ; Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Interpreting faecal nitrogen as a non-invasive indicator of diet quality and body condition in contexts of high ungulate density. EUR J WILDLIFE RES 2015. [DOI: 10.1007/s10344-015-0927-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Nugent G, Gortazar C, Knowles G. The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. N Z Vet J 2015; 63 Suppl 1:54-67. [PMID: 25295713 PMCID: PMC4566879 DOI: 10.1080/00480169.2014.963792] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In New Zealand, wild deer and feral pigs are assumed to be spillover hosts for Mycobacterium bovis, and so are not targeted in efforts aimed at locally eradicating bovine tuberculosis (TB) from possums (Trichosurus vulpecula), the main wildlife host. Here we review the epidemiology of TB in deer and pigs, and assess whether New Zealand's TB management programme could be undermined if these species sometimes achieve maintenance host status. In New Zealand, TB prevalences of up to 47% have been recorded in wild deer sympatric with tuberculous possums. Patterns of lesion distribution, age-specific prevalences and behavioural observations suggest that deer become infected mainly through exposure to dead or moribund possums. TB can progress rapidly in some deer (<10%), but generalised disease is uncommon in wild deer; conversely some infected animals can survive for many years. Deer-to-deer transmission of M. bovis is rare, but transmission from tuberculous deer carcasses to scavengers, including possums, is likely. That creates a small spillback risk that could persist for a decade after transmission of new infection to wild deer has been halted. Tuberculosis prevalence in New Zealand feral pigs can reach 100%. Infections in lymph nodes of the head and alimentary tract predominate, indicating that TB is mostly acquired through scavenging tuberculous carrion, particularly possums. Infection is usually well contained, and transmission between pigs is rare. Large reductions in local possum density result in gradual declines (over 10 years) in TB prevalence among sympatric wild deer, and faster declines in feral pigs. Elimination of TB from possums (and livestock) therefore results in eventual disappearance of TB from feral pigs and wild deer. However, the risk of spillback infection from deer to possums substantially extends the time needed to locally eradicate TB from all wildlife (compared to that which would be required to eradicate disease from possums alone), while dispersal or translocation of pigs (e.g. by hunters) creates a risk of long-distance spread of disease. The high rate at which pigs acquire M. bovis infection from dead possums makes them useful as sentinels for detecting TB in wildlife. It is unlikely that wild deer and feral pigs act as maintenance hosts anywhere in New Zealand, because unrestricted year-round hunting keeps densities low, with far less aggregation than on New Zealand farms. We conclude that active management of wild deer or feral pigs is not required for local TB eradication in New Zealand.
Collapse
Affiliation(s)
- G Nugent
- a Landcare Research , Lincoln 7640 , New Zealand
| | | | | |
Collapse
|
19
|
Becker DJ, Streicker DG, Altizer S. Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis. Ecol Lett 2015; 18:483-95. [PMID: 25808224 PMCID: PMC4403965 DOI: 10.1111/ele.12428] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/19/2014] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Abstract
Urbanisation and agriculture cause declines for many wildlife, but some species benefit from novel resources, especially food, provided in human-dominated habitats. Resulting shifts in wildlife ecology can alter infectious disease dynamics and create opportunities for cross-species transmission, yet predicting host-pathogen responses to resource provisioning is challenging. Factors enhancing transmission, such as increased aggregation, could be offset by better host immunity due to improved nutrition. Here, we conduct a review and meta-analysis to show that food provisioning results in highly heterogeneous infection outcomes that depend on pathogen type and anthropogenic food source. We also find empirical support for behavioural and immune mechanisms through which human-provided resources alter host exposure and tolerance to pathogens. A review of recent theoretical models of resource provisioning and infection dynamics shows that changes in host contact rates and immunity produce strong non-linear responses in pathogen invasion and prevalence. By integrating results of our meta-analysis back into a theoretical framework, we find provisioning amplifies pathogen invasion under increased host aggregation and tolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites. These results carry implications for wildlife disease management and highlight areas for future work, such as how resource shifts might affect virulence evolution.
Collapse
Affiliation(s)
- Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
20
|
Gortazar C, Diez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front Vet Sci 2015; 1:27. [PMID: 26664926 PMCID: PMC4668863 DOI: 10.3389/fvets.2014.00027] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
The control of diseases shared with wildlife requires the development of strategies that will reduce pathogen transmission between wildlife and both domestic animals and human beings. This review describes and criticizes the options currently applied and attempts to forecast wildlife disease control in the coming decades. Establishing a proper surveillance and monitoring scheme (disease and population wise) is the absolute priority before even making the decision as to whether or not to intervene. Disease control can be achieved by different means, including: (1) preventive actions, (2) arthropod vector control, (3) host population control through random or selective culling, habitat management or reproductive control, and (4) vaccination. The alternative options of zoning or no-action should also be considered, particularly in view of a cost/benefit assessment. Ideally, tools from several fields should be combined in an integrated control strategy. The success of disease control in wildlife depends on many factors, including disease ecology, natural history, and the characteristics of the pathogen, the availability of suitable diagnostic tools, the characteristics of the domestic and wildlife host(s) and vectors, the geographical spread of the problem, the scale of the control effort and stakeholders’ attitudes.
Collapse
Affiliation(s)
- Christian Gortazar
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Iratxe Diez-Delgado
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain ; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid , Spain
| | - Jose Angel Barasona
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Joaquin Vicente
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain
| | - Jose De La Fuente
- SaBio (Health and Biotechnology), IREC (CSIC - UCLM - JCCM) , Ciudad Real , Spain ; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, OK , USA
| | - Mariana Boadella
- SABIOtec Spin-Off, Edificio Polivalente UCLM , Ciudad Real , Spain
| |
Collapse
|
21
|
Davidson RK, Ličina T, Gorini L, Milner JM. Endoparasites in a Norwegian moose (Alces alces) population - Faunal diversity, abundance and body condition. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:29-36. [PMID: 25830105 PMCID: PMC4356740 DOI: 10.1016/j.ijppaw.2014.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/07/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022]
Abstract
Moose in Hedmark have high abomasal parasite burdens. 11 parasite groups were identified with abomasal GINs found in all individuals. 4 abomasal GINs identified; Ostertagia antipini and Spiculopteragia alcis dominated. Body condition index was negatively related to abomasal parasite burden. Fat reserve assessment and faecal egg count were poor indicators of parasitism.
Many health surveillance programs for wild cervids do not include routine parasite screening despite evidence that gastrointestinal parasites can affect wildlife population dynamics by influencing host fecundity and survival. Slaughter weights of moose in some regions of Norway have been decreasing over recent decades but any role of parasites has not yet been considered. We investigated parasite faunal diversity of moose in Hedmark, SE Norway, by faecal analysis and identification of adult abomasal and caecal nematodes during the autumn hunting season. We related parasite prevalence and abundance to estimates of body condition, gender and age. We identified 11 parasite groups. Moose had high abomasal gastrointestinal nematode (GIN) burdens and all individuals were infected. Ostertagia antipini and Spiculopteragia alcis were the most prevalent abomasal GINs identified. O. leptospicularis and Telodorsagia circumcincta were also identified in the abomasa while a range of other GIN and Moniezia sp. eggs, and coccidia, Dictyocaulus sp. and Protostrongylid larvae were found in faeces. Female moose had higher mean abomasal nematode counts than males, particularly among adults. However, adult males had higher faecal egg counts than adult females which may reflect reduction in faecal volume with concentration of eggs among males during the rut. We found no strong evidence for the development of acquired immunity to abomasal nematodes with age, although there was a higher Protostrongylid and Moniezia infection prevalence in younger animals. High burdens of several parasites were associated with poor body condition in terms of slaughter weight relative to skeletal size but unrelated to visually evaluated fat reserves. Given findings from earlier experimental studies, our results imply sub-clinical effects of GI parasite infection on host condition. Managers should be aware that autumn faecal egg counts and field assessments of fat reserves may not be reliable indicators of parasitism and may underestimate impacts on wildlife populations.
Collapse
Affiliation(s)
| | - Tina Ličina
- Faculty of Applied Ecology and Agricultural Sciences, Hedmark University College, Evenstad, 2480 Koppang, Norway
| | - Lucrezia Gorini
- Faculty of Applied Ecology and Agricultural Sciences, Hedmark University College, Evenstad, 2480 Koppang, Norway
| | - Jos M Milner
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
22
|
Miranda M, Cristóbal I, Díaz L, Sicilia M, Molina-Alcaide E, Bartolomé J, Fierro Y, Cassinello J. Ecological effects of game management: does supplemental feeding affect herbivory pressure on native vegetation? WILDLIFE RESEARCH 2015. [DOI: 10.1071/wr15025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Supplemental feeding of large mammalian herbivores is a common management tool mainly aimed at promoting healthy populations and at increasing productivity and trophy sizes. Such management measure may indirectly affect herbivore effects on plant communities through altered foraging patterns. The quantification of the ecological effects of large herbivore management is important for designing holistic management and conservation programs. Aims Here we aimed at quantifying the ecological effects of supplemental feeding of Iberian red deer, Cervus elaphus hispanicus, on the composition of and on the browsing effects on Mediterranean woody plant community. Methods An experiment was set up in a hunting rangeland located in central Spain, where female deer were kept in enclosures with either exclusive access to natural forages or with additional ad libitum access to a nutritionally rich concentrate. The experiment also included a control area where deer were absent. Key results We observed significant differences in browsing impacts among the supplemented, non-supplemented and control areas, and such effect varied for the different plant species. Plant species which nutritional content complemented that of fodder were more highly consumed, for instance, Erica spp., which digestible fibre content is higher and N content lower than that of provided fodder. The presence of deer and the concentrate supplied, instead, did not influence the relative abundances of shrub species. Conclusions Artificial supplemental feeding provided to ungulates led to increased browsing on plant species which nutritional composition complemented that of the supplement provided. Implications So as to alleviate herbivory impact on all shrubs, we suggest that composition of supplemental feeding should adjust both to the natural forage availability and quality and to ungulate requirements across seasons.
Collapse
|
23
|
Milner JM, Van Beest FM, Schmidt KT, Brook RK, Storaas T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J Wildl Manage 2014. [DOI: 10.1002/jwmg.798] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jos M. Milner
- Department of Forestry and Wildlife Management; Hedmark University College; Campus Evenstad NO-2480 Koppang Norway
- School of Biological Sciences; University of Aberdeen; Tillydrone Avenue Aberdeen AB24 2TZ UK
| | - Floris M. Van Beest
- Department of Bioscience; Aarhus University; Frederiksborgvej 399 Roskilde 4000 Denmark
| | | | - Ryan K. Brook
- Department of Animal and Poultry Science & Indigenous Land Management Institute; College of Agriculture and Bioresources; University of Saskatchewan; 51 Campus Drive Saskatoon SK S7N 5E2 Canada
| | - Torstein Storaas
- Department of Forestry and Wildlife Management; Hedmark University College; Campus Evenstad NO-2480 Koppang Norway
| |
Collapse
|
24
|
Tseng M, Myers JH. The relationship between parasite fitness and host condition in an insect--virus system. PLoS One 2014; 9:e106401. [PMID: 25208329 PMCID: PMC4160166 DOI: 10.1371/journal.pone.0106401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
Research in host-parasite evolutionary ecology has demonstrated that environmental variation plays a large role in mediating the outcome of parasite infection. For example, crowding or low food availability can reduce host condition and make them more vulnerable to parasite infection. This observation that poor-condition hosts often suffer more from parasite infection compared to healthy hosts has led to the assumption that parasite productivity is higher in poor-condition hosts. However, the ubiquity of this negative relationship between host condition and parasite fitness is unknown. Moreover, examining the effect of environmental variation on parasite fitness has been largely overlooked in the host-parasite literature. Here we investigate the relationship between parasite fitness and host condition by using a laboratory experiment with the cabbage looper Trichoplusia ni and its viral pathogen, AcMNPV, and by surveying published host-parasite literature. Our experiments demonstrated that virus productivity was positively correlated with host food availability and the literature survey revealed both positive and negative relationships between host condition and parasite fitness. Together these data demonstrate that contrary to previous assumptions, parasite fitness can be positively or negatively correlated with host fitness. We discuss the significance of these findings for host-parasite population biology.
Collapse
Affiliation(s)
- Michelle Tseng
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Judith H. Myers
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev Vet Med 2013; 112:213-21. [DOI: 10.1016/j.prevetmed.2013.08.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/12/2013] [Accepted: 08/16/2013] [Indexed: 11/21/2022]
|
26
|
Dunn JC, Goodman SJ, Benton TG, Hamer KC. Avian blood parasite infection during the non-breeding season: an overlooked issue in declining populations? BMC Ecol 2013; 13:30. [PMID: 24011390 PMCID: PMC3848531 DOI: 10.1186/1472-6785-13-30] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Pathogens and parasites can have major impacts on host population dynamics, both through direct mortality and via indirect effects. Both types of effect may be stronger in species whose populations are already under pressure. We investigated the potential for blood parasites to impact upon their hosts at the immunological, physiological and population level during the non-breeding season using a declining population of yellowhammers Emberiza citrinella as a model. Results Yellowhammers infected by Haemoproteus spp. showed both a reduced heterophil to lymphocyte (H:L) ratio, and an elevated standardised white blood cell (WBC) count compared to uninfected birds, indicating an immunological response to infection. Infected birds had shorter wings during the first winter of sampling but not during the second, colder, winter; survival analysis of 321 birds sampled across four winters indicated that increased wing length conferred a survival advantage. Conclusions We suggest that the potential impacts of blood parasite infections on over-wintering birds may have been underestimated. Further research should consider the potential impacts of sub-clinical parasite infections on the dynamics of vulnerable populations, and we suggest using declining populations as model systems within which to investigate these relationships as well as examining interactions between sub-clinical disease and other environmental stressors. JEL Code Q5
Collapse
Affiliation(s)
- Jenny C Dunn
- School of Biology, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
27
|
Ruiz-Fons F, Acevedo P, Sobrino R, Vicente J, Fierro Y, Fernández-de-Mera IG. Sex-biased differences in the effects of host individual, host population and environmental traits driving tick parasitism in red deer. Front Cell Infect Microbiol 2013; 3:23. [PMID: 23819112 PMCID: PMC3694362 DOI: 10.3389/fcimb.2013.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/09/2013] [Indexed: 11/13/2022] Open
Abstract
The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer-182 males and 124 females-were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including "sex" as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds.
Collapse
Affiliation(s)
- Francisco Ruiz-Fons
- Animal Health and Biotechnology Group (SaBio), Spanish National Wildlife Research Institute (IREC CSIC-UCLM-JCCM) Ciudad Real, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Navarro-Gonzalez N, Fernández-Llario P, Pérez-Martín JE, Mentaberre G, López-Martín JM, Lavín S, Serrano E. Supplemental feeding drives endoparasite infection in wild boar in Western Spain. Vet Parasitol 2013; 196:114-23. [PMID: 23537946 DOI: 10.1016/j.vetpar.2013.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 11/29/2022]
Abstract
Wildlife population management is thought to destabilize existing host-parasite equilibriums in opposing directions, that is, it may increase parasite success or host resilience once infection takes place. This process is of special importance for species such as the wild boar (Sus scrofa) that are managed for game purposes throughout much of Europe. However, little is known about how this practices influcences either gastrointestinal or pulmonary parasitism in the wild boar. Twelve hunting estates were chosen in order to study the relationship of management measures (feeder density, wild boar abundance, the ratio of wild boar per feeder and the percentage of sclerophyllous vegetation) and host factors (age and sex) with gastrointestinal and pulmonary parasite aggregation, richness, infection probability and intensity of infection. Parasitological analyses from 300 wild boar gastrointestinal and 269 respiratory tracts were performed for this purpose. A set of general linear models with combinations of the explanatory variables was built and the model with the smallest Akaike Information Criterion was selected as the best. The feeder density increased gastrointestinal parasite traits (richness, infection probability and intensity of infection), probably due to the contamination of feeding sites with infective parasite forms. Pulmonary parasite traits, on the other hand, were only influenced by host sex and age class, and parasite aggregation was as expected for a wild population. Managers should be aware of the consequences on parasitism when implementing supplemental feeding in hunting estates.
Collapse
Affiliation(s)
- Nora Navarro-Gonzalez
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Schöning JM, Cerny N, Prohaska S, Wittenbrink MM, Smith NH, Bloemberg G, Pewsner M, Schiller I, Origgi FC, Ryser-Degiorgis MP. Surveillance of bovine tuberculosis and risk estimation of a future reservoir formation in wildlife in Switzerland and Liechtenstein. PLoS One 2013; 8:e54253. [PMID: 23349839 PMCID: PMC3549981 DOI: 10.1371/journal.pone.0054253] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Bovine tuberculosis (bTB) caused by Mycobacterium bovis or M. caprae has recently (re-) emerged in livestock and wildlife in all countries bordering Switzerland (CH) and the Principality of Liechtenstein (FL). Comprehensive data for Swiss and Liechtenstein wildlife are not available so far, although two native species, wild boar (Sus scrofa) and red deer (Cervus elaphus elaphus), act as bTB reservoirs elsewhere in continental Europe. Our aims were (1) to assess the occurrence of bTB in these wild ungulates in CH/FL and to reinforce scanning surveillance in all wild mammals; (2) to evaluate the risk of a future bTB reservoir formation in wild boar and red deer in CH/FL. Tissue samples collected from 2009 to 2011 from 434 hunted red deer and wild boar and from eight diseased ungulates with tuberculosis-like lesions were tested by direct real-time PCR and culture to detect mycobacteria of the Mycobacterium tuberculosis complex (MTBC). Identification of suspicious colonies was attempted by real-time PCR, genotyping and spoligotyping. Information on risk factors for bTB maintenance within wildlife populations was retrieved from the literature and the situation regarding identified factors was assessed for our study areas. Mycobacteria of the MTBC were detected in six out of 165 wild boar (3.6%; 95% CI: 1.4-7.8) but none of the 269 red deer (0%; 0-1.4). M. microti was identified in two MTBC-positive wild boar, while species identification remained unsuccessful in four cases. Main risk factors for bTB maintenance worldwide, including different causes of aggregation often resulting from intensive wildlife management, are largely absent in CH and FL. In conclusion, M. bovis and M. caprae were not detected but we report for the first time MTBC mycobacteria in Swiss wild boar. Present conditions seem unfavorable for a reservoir emergence, nevertheless increasing population numbers of wild ungulates and offal consumption may represent a risk.
Collapse
Affiliation(s)
- Janne Marie Schöning
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nadine Cerny
- Institute of Veterinary Bacteriology (IVB), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Prohaska
- Institute of Veterinary Bacteriology (IVB), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Max M. Wittenbrink
- Institute of Veterinary Bacteriology (IVB), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Noel H. Smith
- Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, New Haw, Surrey, United Kingdom
| | - Guido Bloemberg
- Institute of Medical Microbiology (IMM), Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Mirjam Pewsner
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Schiller
- Federal Veterinary Office, Animal Health Division, Bern, Switzerland
| | - Francesco C. Origgi
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | |
Collapse
|
30
|
Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Mateo R, Rodríguez Fariñas N, Rodríguez-Estival J, Patiño Ropero MJ. Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study. ENVIRONMENTAL RESEARCH 2012; 112:58-66. [PMID: 22019248 DOI: 10.1016/j.envres.2011.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 09/20/2011] [Accepted: 09/27/2011] [Indexed: 05/28/2023]
Abstract
Mercury (Hg) accumulation, transfer, defense mechanism and adverse effects were studied in red deer (Cervus elaphus) and wild boar (Sus scrofa) from the Almadén mining district (Spain), the largest (285,000 t of Hg) and the oldest (more than 2000 years) Hg mine/refining operation site in the world. Red deer (n=168) and wild boar (n=58) liver, kidney, bones (metacarpus), testis and muscle were analyzed for total Hg and selenium (Se) within a range of distances to the Almadén mining district. The highest Hg concentrations were found in kidney (0.092 and 0.103 μg/g d.w. for red deer and wild boar, respectively) followed by the levels in liver (0.013 and 0.023 μg/g d.w. for red deer and wild boar, respectively). A significant correlation (r=-0.609, p=0.007) was found between Hg concentrations and distance to the Almadén Hg mining district. However, both red deer and wild boar closest to the mining area still showed mercury concentrations well below the concentration associated with clinical signs of Hg poisoning. Highest Se concentrations were found in kidney (2.60 and 6.08 μg/g in red deer and wild boar, respectively) and testis (2.20 μg/g in red deer). For selenium, differences between red deer and wild boar were statistically significant (p<0.05) in all tissues, concentrations being higher in wild boar than in red deer. In the diagnosis of Se deficiency, the vast majority of the examined red deer livers were deficient. A significant correlation was found between Hg and Se in kidney (r=0.386, p>0.001 for red deer and r=0.567, p=0.005 for wild boar). Liver GSSG concentrations were negatively correlated to total mercury and Hg:Se molar ratio in male deer, which could indicate a hormetic response to Hg exposure. Moreover, a positive association was found between the antioxidant element Se and antioxidant vitamins in red deer tissues.
Collapse
Affiliation(s)
- Juan J Berzas Nevado
- Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Shury TK, Bergeson D. Lesion Distribution and Epidemiology of Mycobacterium bovis in Elk and White-Tailed Deer in South-Western Manitoba, Canada. Vet Med Int 2011; 2011:591980. [PMID: 21776351 PMCID: PMC3135165 DOI: 10.4061/2011/591980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/03/2011] [Accepted: 03/21/2011] [Indexed: 01/15/2023] Open
Abstract
Surveillance for Mycobacterium bovis in free-ranging elk (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) from south-western Manitoba was carried out from 1997 to 2010 to describe the lesions, epidemiology, and geographic distribution of disease. Tissues were cultured from animals killed by hunters, culled for management, blood-tested, or found opportunistically. Period prevalence in elk was approximately six times higher than deer, suggesting a significant reservoir role for elk, but that infected deer may also be involved. Prevalence was consistently higher in elk compared to deer in a small core area and prevalence declines since 2003 are likely due to a combination of management factors instituted during that time. Older age classes and animals sampled from the core area were at significantly higher risk of being culture positive. Positive elk and deer were more likely to be found through blood testing, opportunistic surveillance, and culling compared to hunting. No non-lesioned, culture-positive elk were detected in this study compared to previous studies in red deer.
Collapse
Affiliation(s)
- Todd K Shury
- Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7K 5B4
| | | |
Collapse
|
33
|
Body G, Ferté H, Gaillard JM, Delorme D, Klein F, Gilot-Fromont E. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer. Oecologia 2011; 167:635-46. [DOI: 10.1007/s00442-011-2018-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
34
|
Gortazar C, Torres MJ, Acevedo P, Aznar J, Negro JJ, de la Fuente J, Vicente J. Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. BMC Microbiol 2011; 11:27. [PMID: 21288321 PMCID: PMC3040691 DOI: 10.1186/1471-2180-11-27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/02/2011] [Indexed: 11/20/2022] Open
Abstract
Background We describe the diversity of two kinds of mycobacteria isolates, environmental mycobacteria and Mycobacterium bovis collected from wild boar, fallow deer, red deer and cattle in Doñana National Park (DNP, Spain), analyzing their association with temporal, spatial and environmental factors. Results High diversity of environmental mycobacteria species and M. bovis typing patterns (TPs) were found. When assessing the factors underlying the presence of the most common types of both environmental mycobacteria and M. bovis TPs in DNP, we evidenced (i) host species differences in the occurrence, (ii) spatial structuration and (iii) differences in the degree of spatial association of specific types between host species. Co-infection of a single host by two M. bovis TPs occurred in all three wild ungulate species. In wild boar and red deer, isolation of one group of mycobacteria occurred more frequently in individuals not infected by the other group. While only three TPs were detected in wildlife between 1998 and 2003, up to 8 different ones were found during 2006-2007. The opposite was observed in cattle. Belonging to an M. bovis-infected social group was a significant risk factor for mycobacterial infection in red deer and wild boar, but not for fallow deer. M. bovis TPs were usually found closer to water marshland than MOTT. Conclusions The diversity of mycobacteria described herein is indicative of multiple introduction events and a complex multi-host and multi-pathogen epidemiology in DNP. Significant changes in the mycobacterial isolate community may have taken place, even in a short time period (1998 to 2007). Aspects of host social organization should be taken into account in wildlife epidemiology. Wildlife in DNP is frequently exposed to different species of non-tuberculous, environmental mycobacteria, which could interact with the immune response to pathogenic mycobacteria, although the effects are unknown. This research highlights the suitability of molecular typing for surveys at small spatial and temporal scales.
Collapse
Affiliation(s)
- Christian Gortazar
- IREC National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Diet quality and immunocompetence influence parasite load of roe deer in a fragmented landscape. EUR J WILDLIFE RES 2010. [DOI: 10.1007/s10344-010-0474-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Kortet R, Hedrick AV, Vainikka A. Parasitism, predation and the evolution of animal personalities. Ecol Lett 2010; 13:1449-58. [DOI: 10.1111/j.1461-0248.2010.01536.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Effects of density, climate, and supplementary forage on body mass and pregnancy rates of female red deer in Spain. Oecologia 2010; 164:389-98. [PMID: 20508950 DOI: 10.1007/s00442-010-1663-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/07/2010] [Indexed: 11/27/2022]
Abstract
The influence of short- and long-term (cohort) effects of climate and density on the life-histories of ungulates in temperate regions may vary with latitude, habitat, and management practices, but the life-histories of ungulates in the Mediterranean region are less well known. This study examined the short- and long-term effects of rainfall and absolute density on hinds in two of the southernmost populations of red deer (Cervus elaphus hispanicus) in Europe. One population received supplementary forage. Unlike more northerly latitudes, where red deer hinds lose body mass in winter as a result of adverse weather, in the Spanish populations, hinds did not lose body mass. Hinds in the population that received supplementary forage were heavier and more likely to become pregnant than were the hinds in the unsupplemented population. The likelihood of pregnancy occurring was strongly influenced by hind body mass; the proportion of yearlings that became pregnant was consequently lower in the unsupplemented population than in the population that received supplementary forage. Cohort effects on hind body mass (negative for density and positive for rainfall at birth) and on the probability of pregnancy (negative for density at birth) were apparent only in the unsupplemented population, which implies that supplemental feeding may partially compensate for negative density-dependent factors during early growth, and that supplemented deer hinds may experience reduced selection pressures. These results reflect the particular seasonal variation in the abundance and quality of food in Mediterranean habitats. The delayed effects of climate and density at birth on adult hind body mass and the prevalence of pregnancy probably affects population dynamics and constitutes a mechanism by which cohort effects affect the population dynamics in Iberian red deer. The management of Iberian red deer populations should take into account cohort effects and supplemental feeding practices, which can buffer density- and climate-dependent effects and reduce natural selection pressures.
Collapse
|
38
|
Monello RJ, Gompper ME. Differential effects of experimental increases in sociality on ectoparasites of free-ranging raccoons. J Anim Ecol 2010; 79:602-9. [PMID: 20148994 DOI: 10.1111/j.1365-2656.2010.01663.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Parasite transmission depends on the rate at which hosts come into contact with one another or the infectious stages of parasites. However, host contact rates and their influence on parasite transmission are difficult to quantify in natural settings and can fluctuate with host behaviour and the ecological constraints of parasites. 2. We investigated how experimental increases in rates of contact and social aggregation affected ectoparasite prevalence and intensity of free-ranging raccoons (Procyon lotor). Twelve independent raccoon populations were subjected to differential resource provisions for 2 years: a clumped food distribution to aggregate hosts (n = 5 aggregated populations), a dispersed food distribution to control for the effects of food without aggregating hosts (n = 3) and a no food treatment (n = 4). 3. Remote cameras indicated that aggregation sizes and rates of contact were three to four times greater in aggregated compared with that in non-aggregated populations. The number of ticks (adult Dermacentor variabilis) on raccoons in aggregated populations was 1.5-2.5 times greater from May to July, the primary time of tick seasonal occurrence. Conversely, louse (Trichodectes octomaculatus) populations were c. 40% sparser on male raccoons in aggregated (compared with that in non-aggregated) populations because of greater overdispersion of lice and a larger number of male hosts harbouring fewer parasites. No treatment-related differences were found among fleas (Orchopeas howardi). 4. These results were not consistent with our current understanding of parasite transmission; greater rates of host sociality led to increases in a parasite that does not rely on host contact for transmission (ticks) and declines in a parasite that depends on host contact for transmission (lice). We concluded that D. variabilis increased in aggregated sites because they can detect and seek out hosts and were more likely to drop off after obtaining a blood meal and re-attach to raccoons in these locations. Several factors may have contributed to sparser louse populations on male hosts, including a dilution effect that lowered per capita infestation levels. 5. These results indicate that ectoparasites can interact in unique ways with their hosts that are not consistent with other types of parasite species or models of their transmission.
Collapse
Affiliation(s)
- Ryan J Monello
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
39
|
Gavier-Widén D, Cooke MM, Gallagher J, Chambers MA, Gortázar C. A review of infection of wildlife hosts with Mycobacterium bovis and the diagnostic difficulties of the 'no visible lesion' presentation. N Z Vet J 2009; 57:122-31. [PMID: 19521460 DOI: 10.1080/00480169.2009.36891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pathology, frequency and diagnostic implications of 'no visible lesion' (NVL) tuberculosis (Tb), i.e. infection with Mycobacterium bovis in the absence of macroscopic lesions, are described in a wide taxonomic range of wildlife hosts. Information collected and evaluated on the definition and occurrence of NVL Tb, histopathological characteristics, post-mortem techniques to detect minimal lesions, and diagnostic difficulties revealed most Tb-infected individuals with NVL had minute tuberculous lesions, which were difficult to see by eye. Acid-fast organisms (AFO) were sometimes detected in the lesions. Ideally, mycobacterial culture of pools of lymph nodes and/or oropharyngeal tonsils is necessary for the accurate diagnosis of Tb in the absence of macroscopic lesions. At a very minimum, the diagnostic methods applied for studying the prevalence of Tb in the population should be clearly described, to allow comparison between studies.
Collapse
Affiliation(s)
- D Gavier-Widén
- National Veterinary Institute (SVA) and Department of Biomedical Sciences and Veterinary Public Health, University of Agricultural Sciences (SLU), SE-75189 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
40
|
Fernandez-de-Mera IG, Vicente J, Naranjo V, Fierro Y, Garde JJ, de la Fuente J, Gortazar C. Impact of major histocompatibility complex class II polymorphisms on Iberian red deer parasitism and life history traits. INFECTION GENETICS AND EVOLUTION 2009; 9:1232-9. [PMID: 19664721 DOI: 10.1016/j.meegid.2009.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/29/2022]
Abstract
Host genetic diversity plays an important role in buffering populations against pathogens. We characterized the allelic diversity at the second exon of the b (DRB-2) chain of the major histocompatibility complex class II (MHC-II) locus in a population of Iberian red deer (Cervus elaphus hispanicus) and its impact on parasitism by macroparasites, on a microparasite causing tuberculosis, and on relevant life history traits (spleen size and body condition). No DRB-2 haplotype conferred general resistance or susceptibility against all parasites. However, specific significant correlations were found between some DRB-2 haplotypes and specific parasites. We also detected associations between DRB-2 haplotypes and body condition and spleen size after controlling for body size, sex and age. Our results evidenced a functional significance of MHC-II genes in the defence of Iberian red deer against parasites. These results also support a role of MHC-II as a fitness-enhancing genetic element which can be mediated by parasite effects on life traits with a genetic basis. We conclude that MHC immunogenetic studies may assess management decisions in Iberian red deer because (i) loss of genetic diversity may lead to increased disease occurrence, and (ii) MHC genes are ecologically relevant since they underlie host infection rates and life history traits.
Collapse
Affiliation(s)
- Isabel G Fernandez-de-Mera
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo, s/n, 13071, Ciudad Real, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Reglero MM, Taggart MA, Castellanos P, Mateo R. Reduced sperm quality in relation to oxidative stress in red deer from a lead mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2209-2215. [PMID: 19427722 DOI: 10.1016/j.envpol.2009.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 05/27/2023]
Abstract
We studied the effects of elevated heavy metal uptake on the sperm quality and the antioxidant mechanisms of sperm and testis of red deer from a Pb mining area in Spain. Testis, liver and bone of red deer from mining (n = 21) and control (n = 20) areas were obtained from hunters and analyzed for Pb, Zn, Cu, Cd, As and Se. Testes were weighed and measured. Motility, acrosome integrity and viability and functionality of membrane were evaluated in epididymal spermatozoa. Lipid peroxidation, total glutathione, glutathione peroxidase (GPX) and superoxide dismutase (SOD) were studied in testis and spermatozoa. Deer from mined areas showed less Cu in testis, a higher testis mass and size and reduced spermatozoa membrane viability and acrosome integrity. Effects on sperm quality were associated to decreased Cu and increased Se in testis, and to decreases in the activity of SOD and GPX in testis and spermatozoa.
Collapse
Affiliation(s)
- Manuel M Reglero
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
42
|
Factors affecting red deer skin test responsiveness to bovine and avian tuberculin and to phytohaemagglutinin. Prev Vet Med 2009; 90:119-26. [DOI: 10.1016/j.prevetmed.2009.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/27/2009] [Accepted: 04/08/2009] [Indexed: 11/22/2022]
|
43
|
Deviance partitioning of host factors affecting parasitization in the European brown hare (Lepus europaeus). Naturwissenschaften 2009; 96:1157-68. [PMID: 19565211 DOI: 10.1007/s00114-009-0577-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Deviance partitioning can provide new insights into the ecology of host-parasite interactions. We studied the host-related factors influencing parasite prevalence, abundance, and species richness in European brown hares (Lepus europaeus) from northern Spain. We defined three groups of explanatory variables: host environment, host population, and individual factors. We hypothesised that parasite infection rates and species richness were determined by different host-related factors depending on the nature of the parasite (endo- or ectoparasite, direct or indirect life cycle). To assess the relative importance of these components, we used deviance partitioning, an innovative approach. The explained deviance (ED) was higher for parasite abundance models, followed by those of prevalence and then by species richness, suggesting that parasite abundance models may best describe the host factors influencing parasitization. Models for parasites with a direct life cycle yielded higher ED values than those for indirect life cycle ones. As a general trend, host individual factors explained the largest proportion of the ED, followed by host environmental factors and, finally, the interaction between host environmental and individual factors. Similar hierarchies were found for parasite prevalence, abundance, and species richness. Individual factors comprised the most relevant group of explanatory variables for both types of parasites. However, host environmental factors were also relevant in models for indirect life-cycle parasites. These findings are consistent with the idea of the host as the main habitat of the parasite; whereas, for indirect life-cycle parasites, transmission would be also modulated by environmental conditions. We suggest that parasitization can be used not only as an indicator of individual fitness but also as an indicator of environmental quality for the host. This research underlines the importance of monitoring parasite rates together with environmental, population, and host factors.
Collapse
|
44
|
Acevedo P, Ruiz-Fons F, Vicente J, Reyes-García AR, Alzaga V, Gortázar C. Estimating red deer abundance in a wide range of management situations in Mediterranean habitats. J Zool (1987) 2008. [DOI: 10.1111/j.1469-7998.2008.00464.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Minimum sampling effort for reliable non-invasive estimations of excretion abundance of Elaphostrongylus cervi L1 in red deer (Cervus elaphus) populations. J Helminthol 2008; 82:255-61. [DOI: 10.1017/s0022149x08972473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractFaecal surveys are commonly used as non-invasive means to evaluate population abundance of animals as well as comparable indexes of prevalence and intensity of diseases between populations, especially macroparasites. While faecal surveys are among one of the simplest means to perform these evaluations, they are time consuming and labour intensive. The present study evaluated 80 red deer (Cervus elaphus) faecal samples collected in two study sites for the presence and abundance of first-stage larvae of the nematode Elaphostrongylus cervi and established pools of samples for epidemiological analysis. The analysis of 20–30 individual samples would produce a reliable estimate of the ‘true’ prevalence, and the error of the smaller sample size only doubled that of the 80 reference samples. The analysis of 5 pools of 5 pellet groups each, or of 4 pools of 10 pellet groups each, provided a reliable estimation of the ‘true’ excretion abundance estimated by the analysis of all 80 samples. These pools comprise a cost-effective and dependable alternative for measuring and obtaining comparable abundances of parasitic faecal excretion stages in red deer populations, which is very valuable for epidemiological and ecological research as well as for management purposes.
Collapse
|
46
|
Estrada-Peña A, Acevedo P, Ruiz-Fons F, Gortázar C, de la Fuente J. Evidence of the importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp. PLoS One 2008; 3:e2999. [PMID: 18714379 PMCID: PMC2500193 DOI: 10.1371/journal.pone.0002999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 07/29/2008] [Indexed: 12/02/2022] Open
Abstract
Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape. In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER) of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR), a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules), the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER. The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER) in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host habitat usage may weaken the predicted dilution effect for tick-borne pathogens and emphasize the importance of the perceptual capabilities of different hosts in different landscapes and habitat fragmentation conditions for predictions of dilution effects.
Collapse
|
47
|
Gortázar C, Torres MJ, Vicente J, Acevedo P, Reglero M, de la Fuente J, Negro JJ, Aznar-Martín J. Bovine tuberculosis in Doñana Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. PLoS One 2008; 3:e2776. [PMID: 18648665 PMCID: PMC2464716 DOI: 10.1371/journal.pone.0002776] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/26/2008] [Indexed: 11/21/2022] Open
Abstract
Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation.
Collapse
Affiliation(s)
- Christian Gortázar
- IREC National Wildlife Research Institute (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| | | | | | | | | | | | | | | |
Collapse
|