1
|
Stable Isotope Tracers of Cretaceous Arctic Paleoprecipitation. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report estimated stable isotope compositions of depositional waters and paleoprecipitation from the Cretaceous Arctic to further elucidate the role of the global hydrologic cycle in sustaining polar warmth during that period. Estimates are based on new hydrogen isotopic analyses of n-alkane biomarkers extracted from Late Cretaceous and mid-Cretaceous terrestrial deposits in northern Alaska and the Canadian High Arctic. We integrate these new results with earlier published work on oxygen isotopic analyses of pedogenic siderites, dinosaurian tooth enamel phosphates, and pedogenic clay minerals from the same field areas. Average Late Cretaceous δD values of −143‰ VSMOW corresponded with average δ18O values of −24.1‰ VSMOW, and average mid-Cretaceous δD values of −106‰ VSMOW corresponded with average δ18O values of −22.1‰ VSMOW. The distributions of water isotope δD and δ18O values from Cretaceous Arctic deposits do not intersect with the Global Meteoric Water Line, suggesting an apparent deuterium excess ranging from about 40 to 60 per mil. We considered several possible explanations for these Cretaceous results including (1) mass-balance changes in zonal patterns of evaporation and precipitation at lower latitudes, (2) concentration of 2H in leaf tissue waters from continuous transpiration by coniferous paleofloras during the Arctic growing season, and (3) concentration of 2H in the groundwaters of methane-emitting Arctic soils.
Collapse
|
2
|
Patalano R, Roberts P, Boivin N, Petraglia MD, Mercader J. Plant wax biomarkers in human evolutionary studies. Evol Anthropol 2021; 30:385-398. [PMID: 34369041 DOI: 10.1002/evan.21921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/07/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Plant wax biomarkers are an innovative proxy for reconstructing vegetation composition and structure, rainfall intensity, temperature, and other climatic and environmental dynamics. Traditionally used in earth sciences and climate studies from "off-site" ocean and lake records, biomarker research is now incorporated in archeology and paleoanthropology to answer questions relating to past human-environment interactions and human evolution. Biomarker research is generating new and exciting information on the ecological context in which Homo and its closest relatives evolved, adapted, and invented stone tool technologies. In this review, we examine plant wax biomarkers and their use in reconstructing past plant landscapes and hydroclimates. We summarize the applications of plant wax molecular proxies in archeological research, assess challenges relating to taphonomy, consider the role of modern plant ecosystems in interpreting ancient habitats, and examine case studies conducted at key paleoanthropological locations in eastern and southern Africa and Europe.
Collapse
Affiliation(s)
- Robert Patalano
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Australia.,Archaeological Studies Program, University of Philippines, Quezon City, Philippines
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Australia.,Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Michael D Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,School of Social Science, The University of Queensland, Brisbane, Australia.,Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Julio Mercader
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany.,Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada.,Institut Català de Paleoecologia Humana i Evolució Social, Tarragona, Spain
| |
Collapse
|
3
|
Rees-Owen RL, Newton RJ, Ivanovic RF, Francis JE, Riding JB, Marca AD. A calibration of cellulose isotopes in modern prostrate Nothofagus and its application to fossil material from Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142247. [PMID: 33254952 DOI: 10.1016/j.scitotenv.2020.142247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Carbon and oxygen isotopes (δ13C and δ18O) in tree rings are widely used to reconstruct palaeoclimate variables such as temperature during the Holocene (12 thousand years ago - present), and are used increasingly in deeper time. However, their use is largely restricted to arboreal trees, which excludes potentially important data from prostrate trees and shrubs, which grow in high latitude and altitude end-member environments. Here, we calibrate the use of δ13C and δ18O as climatic archives in two modern species of southern beech (Nothofagus) from Tierra del Fuego, Chile, at the southern limit of their current range. We show that prostrate trees are potentially suitable archives for recording climatological means over longer periods (on the order of decades), which opens up these important environments for tree ring isotope analysis. We then apply our new understanding to a remarkable late Neogene (17-2.5 Ma) fossil Nothofagus assemblage from the Transantarctic Mountains, Antarctica, representative of a prostrate tundra shrub growing during a period of significant ice sheet retreat. The δ13C of the fossil cellulose was found to be ~4‰ enriched relative to that of the modern tress. This is likely to be due to a combination of a more positive δ13C of contemporaneous atmospheric CO2 and enhanced water use efficiency at the fossil site. Using the cellulose-δ18O in the fossil wood, we are able to reconstruct precipitation oxygen isotopes over the Antarctic interior for the first time for this time period. The results show that δ18Oprecip over Antarctica was -16.0 ± 4.2‰, around 12‰ enriched relative to today, suggesting changes in the hydrological cycle linked to warmer temperatures and a smaller ice sheet.
Collapse
Affiliation(s)
| | - Robert J Newton
- School of Earth and Environment, University of Leeds, Leeds, UK.
| | - Ruza F Ivanovic
- School of Earth and Environment, University of Leeds, Leeds, UK
| | | | | | - Alina D Marca
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
4
|
Liu J, An Z. Variations in hydrogen isotopic fractionation in higher plants and sediments across different latitudes: Implications for paleohydrological reconstruction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:470-478. [PMID: 30199691 DOI: 10.1016/j.scitotenv.2018.09.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Sedimentary δDn-alkane value is widely utilized as a reliable proxy for paleo-hydrological reconstruction. Applications of this proxy must be based upon a globally clear understanding of the relationship between leaf wax δDn-alkane values and precipitation δD (δDp), defined as apparent fractionation (εapp). However, there is a critical concern about whether relatively constant εapp values exist across different latitudes. In this study, we systematically analyzed the variations of available εapp with latitudes based upon two compiled-new databases of higher plants and sediments over the world. We found that the total average εapp was relatively constant, i.e., -116 ± 5‰ (n = 941), in higher plants across different latitudes without consideration of plant types (e.g., dicots, monocots, gymnosperms), and was still constant but slightly lower average εapp, i.e., -125 ± 6‰ (n = 460), in sediments across the latitudes. The slightly lower average εapp in sediments relative to higher plants probably derived from the contribution of aquatic plants with isotopically D-depleted εapp in lake sediments. Interestingly, with consideration of plant types, average εapp increased in dicots but decreased in monocots slightly from low to high latitudes. The counteraction of these competing trends generates relatively constant average εapp values in higher plants, and resultantly constant average εapp values occur in sediments at the global scale. It is important to elaborate relatively constant εapp values from higher plants and sediments across different latitudes when sedimentary δDn-alkane is utilized as a proxy for paleohydrological reconstruction.
Collapse
Affiliation(s)
- Jinzhao Liu
- State key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhisheng An
- State key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
5
|
Tipple BJ, Hambach B, Barnette JE, Chesson LA, Ehleringer JR. The influences of cultivation setting on inflorescence lipid distributions, concentrations, and carbon isotope ratios of Cannabis sp. Forensic Sci Int 2016; 262:233-41. [PMID: 27045381 DOI: 10.1016/j.forsciint.2016.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 11/26/2022]
Abstract
While much is known about how the growth environment influences many aspects of floral morphology and physiology, little is known about how the growth setting influences floral lipid composition. We explored variations in paraffin wax composition in Cannabis sp., a cash crop grown both indoors and outdoors across the United States today. Given an increased focus on regulation of this crop, there are additional incentives to certify the setting of Cannabis cultivation. To understand the impacts of the growth environment, we studied distributions, concentrations, and carbon isotope ratios of n-alkanes isolated from Cannabis sp. inflorescences to assess if variations within these lipid parameters were related to known growth settings of specimens seized by federal agents. We found that Cannabis plants cultivated under open-field settings had increased inflorescence paraffin wax abundances and greater production of lower molecular weight n-alkanes relative to plants grown in enclosed environments. Further, the carbon isotope ratios of n-C29 from Cannabis plants grown in enclosed environments had relatively lower carbon isotope (δ(13)C) values compared to plants from open-field environments. While this set of observations on seized plant specimens cannot address the particular driver behind these observations, we posit that (a) variations in irradiance and/or photoperiod may influence the distribution and concentration of inflorescence lipids, and (b) the δ(13)C value of source CO2 and lipid concentration regulates the δ(13)C values of inflorescence n-C29 and bulk Cannabis plant materials. Nonetheless, by using a cultivation model based on δ(13)C values of n-C29, the model correctly identified the growth environment 90% of time. We suggest that these lipid markers may be used to trace cultivation methods of Cannabis sp. now and become a more powerful marker in the future, once the mechanism(s) behind these patterns is uncovered.
Collapse
Affiliation(s)
- Brett J Tipple
- Department of Biology, University of Utah, Salt Lake City, UT 84112, United States; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT 84112, United States.
| | - Bastian Hambach
- Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Janet E Barnette
- Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | | | - James R Ehleringer
- Department of Biology, University of Utah, Salt Lake City, UT 84112, United States; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
6
|
Ladd SN, Sachs JP. Hydrogen isotope response to changing salinity and rainfall in Australian mangroves. PLANT, CELL & ENVIRONMENT 2015; 38:2674-2687. [PMID: 26013204 DOI: 10.1111/pce.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Hydrogen isotope ratios ((2) H/(1) H, δ(2) H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ(2) H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ(2) H and leaf and xylem water δ(2) H and δ(18) O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net (2) H/(1) H fractionation between surface water and leaf lipids decreased by 0.5-1.0‰ ppt(-1) for n-alkanes and 0.4-0.8‰ ppt(-1) for isoprenoids. Xylem water was (2) H depleted relative to surface water, reflecting (2) H discrimination of 4-10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water (2) H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ(2) H values cannot explain the salinity-dependent (2) H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ(2) H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes.
Collapse
Affiliation(s)
- S Nemiah Ladd
- School of Oceanography, University of Washington, Box 355315, Seattle, WA, 98195, USA.
| | - Julian P Sachs
- School of Oceanography, University of Washington, Box 355315, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Tipple BJ, Berke MA, Hambach B, Roden JS, Ehleringer JR. Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model. PLANT, CELL & ENVIRONMENT 2015; 38:1035-1047. [PMID: 25266328 DOI: 10.1111/pce.12457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization.
Collapse
Affiliation(s)
- Brett J Tipple
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA; Global Change and Sustainability Center, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Sachse D, Dawson TE, Kahmen A. Seasonal variation of leaf wax n-alkane production and δ(2)H values from the evergreen oak tree, Quercus agrifolia. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2015; 51:124-142. [PMID: 25704898 DOI: 10.1080/10256016.2015.1011636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In order to understand the timing of leaf wax synthesis in higher plants, we analysed the variability in leaf wax n-alkane concentration, composition (expressed as average chain length (ACL)), and δ(2)Hwax values as well as plant source water δ(2)H values (xylem and leaf water) in the evergreen tree Quercus agrifolia over a period of 9 months, beginning with leaf flush. We identified three distinct periods of leaf development with the first month following leaf flush being characterized by de novo synthesis and possibly removal of n-alkanes. During the following 3 months, n-alkane concentrations increased sevenfold and δ(2)Hwax and ACL values increased, suggesting this period was the major leaf wax n-alkane formation period. During the remaining 4 months of the experiment, stable values suggest cessation of leaf wax n-alkane formation. We find that n-alkane synthesis in Q. agrifolia takes place over 4 months, substantially longer than that observed for deciduous trees.
Collapse
Affiliation(s)
- Dirk Sachse
- a Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences , Section 5.1: Geomorphology, Potsdam , Germany
| | | | | |
Collapse
|
10
|
Climatic significance of n-alkanes and their compound-specific δD values from lake surface sediments on the Southwestern Tibetan Plateau. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0227-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|