1
|
Dos Santos DFB, Herschberger JE, Subedi B, Pocius VM, Neely WJ, Greenspan SE, Becker CG, Romero GQ, Kersch-Becker MF. Leaf Shelters Facilitate the Colonisation of Arthropods and Enhance Microbial Diversity on Plants. Ecol Lett 2024; 27:e14499. [PMID: 39354894 DOI: 10.1111/ele.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 10/03/2024]
Abstract
Shelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant-associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant-microbe interactions. By artificially constructing leaf shelters, we provide evidence that shelter-building insects influence not only the arthropod community structure but also impact the phyllosphere microbiota. Leaf shelters exhibited higher abundance and richness of arthropods, changing the associated arthropod community composition. These shelters also altered the composition and community structure of phyllosphere microbiota, promoting greater richness and diversity of bacteria at the phyllosphere. In leaf shelters, microbial diversity positively correlated with the richness and diversity of herbivores. These findings demonstrate the critical role of leaf shelters in structuring both arthropod and microbial communities through altered microhabitats and species interactions.
Collapse
Affiliation(s)
- Danilo F B Dos Santos
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Ecology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Chemical Ecology, Ecology Institute, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jacob E Herschberger
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Bijay Subedi
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Chemical Ecology, Ecology Institute, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Victoria M Pocius
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Wesley J Neely
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, Alabama, USA
| | - C Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gustavo Q Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mônica F Kersch-Becker
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Chemical Ecology, Ecology Institute, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Reinhardt JR, Marquis RJ. Ecosystem engineering and leaf quality together affect arthropod community structure and diversity on white oak (Quercus alba L.). Oecologia 2023; 203:13-25. [PMID: 37689603 PMCID: PMC10615914 DOI: 10.1007/s00442-023-05439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
Shelter building caterpillars act as ecosystem engineers by creating and maintaining leaf shelters, which are then colonized by other arthropods. Foliage quality has been shown to influence initial colonization by shelter-building caterpillars. However, the effects of plant quality on the interactions between ecosystem engineers and their communities have yet to be studied at the whole plant level. We examined how leaf tying caterpillars, as ecosystem engineers, impact arthropod communities on Quercus alba (white oak), and the modifying effect of foliage quality on these interactions. We removed all leaf tying caterpillars and leaf ties on 35 Q. alba saplings during the season when leaf tying caterpillars were active (June-September), and compared these leaf tie removal trees to 35 control trees whose leaf ties were left intact. Removal of these ecosystem engineers had no impact on overall arthropod species richness, but reduced species diversity, and overall arthropod abundance and that of most guilds, and changed the structure of the arthropod community as the season progressed. There was an increase in plant-level species richness with increasing number of leaf ties, consistent with Habitat Diversity Hypothesis. In turn, total arthropod density, and that of both leaf tying caterpillars and free-feeding caterpillars were affected by foliar tannin and nitrogen concentrations, and leaf water content. The engineering effect was greatest on low quality plants, consistent with the Stress-Gradient Hypothesis. Our results demonstrate that interactions between ecosystem engineering and plant quality together determine community structure of arthropods on Q. alba in Missouri.
Collapse
Affiliation(s)
- Jason R Reinhardt
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, MO, 63121, USA.
- USDA Forest Service, Rocky Mountain Research Station, Forest and Woodland Ecosystems, 1221 South Main Street, Moscow, ID, 83843, USA.
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, MO, 63121, USA
| |
Collapse
|
3
|
Yuan GG, Zhao LC, Du YW, Yu H, Shi XB, Chen WC, Chen G. Repellence or attraction: secondary metabolites in pepper mediate attraction and defense against Spodoptera litura. PEST MANAGEMENT SCIENCE 2022; 78:4859-4870. [PMID: 36181416 DOI: 10.1002/ps.7107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Resistance to insect pests is an important self-defense characteristic of pepper plants. However, the resistance of different pepper cultivars to Spodoptera litura larvae, one of the main insect pest species on pepper, is not well understood. RESULTS Among seven pepper cultivars evaluated, cayenne pepper 'FXBX' showed the highest repellency to third instar S. litura larvae, Chao tian chili pepper 'BLTY2' showed the lowest repellency. Plant volatiles (1-hexene, hexanal, β-ionone, (E,E)-2,6-nonadienal, and methyl salicylate) affected host selection by S. litura. Among these, 1-hexene, hexanal, and β-ionone at concentrations naturally-released by pepper leaves were found to repel S. litura. Interestingly, S. litura larvae fed on the larva-attracting pepper cultivar, (BLTY2) had an extended developmental period, which was about 13 days longer than larvae fed on FXBX. Besides, the survival rate of larvae fed on BLTY2 was 22.5 ± 0.0%, indicating that the leaves of BLTY2 can kill S. litura larvae. Correlation analysis showed that larval survival rate, emergence rate, female adult longevity, and pupal weight were positively correlated with the vitamin C, amino acids, protein, cellulose, and soluble sugar contents, but were negatively correlated with wax and flavonoids contents. CONCLUSION We identified two different modes of direct defense exhibited by pepper cultivars against S. litura. One involves the release of repellent volatiles to avoid been fed on (FXBX cultivar). The other involves the inhibition of the growth and development or the direct killing of S. litura larvae which feeds on it (BLTY2 cultivar). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge-Ge Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| | - Lin-Chao Zhao
- Economic Crops Extension department, Tanghe County Agriculture and Rural Bureau, Nanyang, P. R. China
| | - Yuan-Wen Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| | - Xiao-Bin Shi
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, P. R. China
| | - Wen-Chao Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, P. R. China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, P. R. China
- College of Plant Protection, Hunan Agricultural University, Changsha, P. R. China
| |
Collapse
|
4
|
Brackley A, Lill J, Weiss M. Ecological Predictors of Pupal Survival in a Common North American Butterfly. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1030-1039. [PMID: 35866523 DOI: 10.1093/ee/nvac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 06/15/2023]
Abstract
All holometabolous insects undergo a pupal life stage, a transformative period during which the insects are immobile and thus particularly vulnerable to both natural enemies and harmful abiotic conditions. For multivoltine species like the silver-spotted skipper [Epargyreus clarus (Cramer) (Lepidoptera: Hesperiidae)], which produces both diapausing and nondiapausing generations throughout much of its range, both the duration of the pupal stage and the ecological challenges faced by pupae can differ among generations. We conducted a set of field experiments to investigate the seasonal and annual variation in pupal mortality for E. clarus pupae experiencing different biotic and abiotic conditions. We also examined the behavioral and ecological factors influencing the construction and persistence of pupal shelters by prepupal larvae. Surprisingly, measures of both cumulative and daily pupal predation were significantly higher during the relatively short (10-14 d) nondiapausing (summer) generations, compared with the diapausing (winter) generations, despite a nearly 20-fold longer pupal duration recorded for the latter. Indirect evidence from field censuses suggested that this intergenerational difference in mortality was due to seasonal variation in consumption of pupae by generalist vertebrate predators. The presence of a shelter increased survival in summer, though not in winter, perhaps because winter pupae were likely to be buried under autumnal leaf litter, regardless of initial shelter status. When constructing their shelters, prepupal E. clarus larvae did not prefer host leaves over nonhost leaves, suggesting that induced preferences are unlikely to play an important role in this process. Despite finding marked differences in the decomposition rates of shelter leaves derived from host vs. nonhost plants, several lines of evidence suggest that these differences are unlikely to impact E. clarus pupal mortality during either the summer or winter generations.
Collapse
Affiliation(s)
- Allison Brackley
- Department of Biology, Georgetown University, 406 Reiss Building, 37th & O Street NW, Washington, DC, 20057, USA
| | - John Lill
- Department of Biological Sciences, George Washington University, 800 22nd Street, Suite 6000, NW, Washington, DC, 20052, USA
| | - Martha Weiss
- Department of Biology, Georgetown University, 406 Reiss Building, 37th & O Street NW, Washington, DC, 20057, USA
| |
Collapse
|
5
|
Capobianco JN, Pietrantuono AL, Aparicio AG, Fernández‐Arhex V. Host plant choice and effect of temperature on feeding behaviour of
Perzelia arda
(Lepidoptera: Depressariidae), a leaf‐tying larva, on Nothofagaceae from the Andean Patagonian forest. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julio Nahuel Capobianco
- Centro Regional Universitario Bariloche Universidad Nacional del Comahue Quintral 1250 San Carlos de Bariloche 8400 Argentina
| | - Ana Laura Pietrantuono
- IFAB – Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA– CONICET) San Carlos de Bariloche Argentina
| | - Alejandro Gabriel Aparicio
- IFAB – Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA– CONICET) San Carlos de Bariloche Argentina
| | - Valeria Fernández‐Arhex
- IFAB – Instituto de Investigaciones Forestales y Agropecuarias Bariloche (INTA– CONICET) San Carlos de Bariloche Argentina
| |
Collapse
|
6
|
Ecosystem engineering in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants. Oecologia 2021; 196:427-439. [PMID: 33970331 DOI: 10.1007/s00442-021-04934-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Wood-boring beetle larvae act as ecosystem engineers by creating stem cavities that are used secondarily as nests by many arboreal ant species. Understanding the heterogeneity and distribution of available cavities and their use by ants is therefore key to understanding arboreal ant community assembly and diversity. Our goals were to quantify the abundance and diversity of beetle-produced cavity resources in a tropical canopy, reveal how ants use these resources, and determine which characteristics of the cavity resource contribute to ant use. We dissected branches from six common tree species in the Brazilian Cerrado savanna, measuring cavity characteristics and identifying the occupants. We sampled 2310 individual cavities, 576 of which were used as nests by 25 arboreal ant species. We found significant differences among tree species in the proportion of stem length bored by beetles, the number of cavities per stem length, average entrance-hole size, and the distribution of cavity volumes. The likelihood that a cavity was occupied was greater for cavities with larger entrance-hole sizes and larger volumes. In particular, there was a strong positive correlation between mean head diameters of ant species and the mean entrance-hole diameter of the cavities occupied by those ant species. Wood-boring beetles contribute to the structuring of the Cerrado ant community by differentially attacking the available tree species. In so doing, the beetles provide a wide range of entrance-hole sizes which ant species partition based on their body size, and large volume cavities that ants appear to prefer.
Collapse
|
7
|
Clark AD, Deffner D, Laland K, Odling-Smee J, Endler J. Niche Construction Affects the Variability and Strength of Natural Selection. Am Nat 2020; 195:16-30. [DOI: 10.1086/706196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Marquis RJ, Lill JT, Forkner RE, Le Corff J, Landosky JM, Whitfield JB. Declines and Resilience of Communities of Leaf Chewing Insects on Missouri Oaks Following Spring Frost and Summer Drought. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00396] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Pietrantuono AL, Bruzzone OA, Fernández-Arhex V. The role of leaf cellulose content in determining host plant preferences of three defoliating insects present in the Andean-Patagonian forest. AUSTRAL ECOL 2016. [DOI: 10.1111/aec.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. L. Pietrantuono
- Estación Experimental Agropecuaria Bariloche; CONICET - Instituto Nacional de Tecnología Agropecuaria; CC277, Av. Modesta Victoria 4450 8400 San Carlos de Bariloche Río Negro Argentina
| | - O. A. Bruzzone
- Estación Experimental Agropecuaria Bariloche; CONICET - Instituto Nacional de Tecnología Agropecuaria; CC277, Av. Modesta Victoria 4450 8400 San Carlos de Bariloche Río Negro Argentina
| | - V. Fernández-Arhex
- Estación Experimental Agropecuaria Bariloche; CONICET - Instituto Nacional de Tecnología Agropecuaria; CC277, Av. Modesta Victoria 4450 8400 San Carlos de Bariloche Río Negro Argentina
| |
Collapse
|
10
|
Singer MS. Behaviorally plastic host-plant use by larval Lepidoptera in tri-trophic food webs. CURRENT OPINION IN INSECT SCIENCE 2016; 14:56-60. [PMID: 27436647 DOI: 10.1016/j.cois.2016.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/06/2023]
Abstract
Plant-insect interactions research emphasizes adaptive plasticity of plants and carnivores, such as parasitoids, implying a relatively passive role of herbivores. Current work is addressing this deficit, with exciting studies of behavioral plasticity of larval Lepidoptera (caterpillars). Here I use select examples to illustrate the diversity of behaviorally plastic host-plant use by caterpillars, including anti-predator tactics, self-medication, and evasion of dynamic plant defenses, as proof of the agency of caterpillar behavior in plant-insect interactions. I emphasize the significance of adaptive behavioral plasticity of caterpillars in the context of tri-trophic interactions. Recent research on trait-mediated indirect interactions places adaptive behavioral plasticity of herbivores at the center of community and food web dynamics, with far-reaching consequences of issues such as community stability.
Collapse
Affiliation(s)
- Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
11
|
Valencia-Cuevas L, Tovar-Sánchez E. Oak canopy arthropod communities: which factors shape its structure? REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0045-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Tovar-Sánchez E, Valencia-Cuevas L, Mussali-Galante P, Ramírez-Rodríguez R, Castillo-Mendoza E. Effect of host-plant genetic diversity on oak canopy arthropod community structure in central Mexico. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Sliwinski M, Sigmon E. Why do leaf-tying caterpillars abandon their leaf ties? PeerJ 2013; 1:e173. [PMID: 24109557 PMCID: PMC3792177 DOI: 10.7717/peerj.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022] Open
Abstract
Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats), but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently abandon their leaf tie due to food limitation and interactions with other caterpillars, but this is a costly behavior.
Collapse
Affiliation(s)
- Michelle Sliwinski
- Department of Biological Sciences, George Washington University , Washington, DC , USA
| | | |
Collapse
|
14
|
Crutsinger GM, Gonzalez AL, Crawford KM, Sanders NJ. Local and latitudinal variation in abundance: the mechanisms shaping the distribution of an ecosystem engineer. PeerJ 2013; 1:e100. [PMID: 23862102 PMCID: PMC3709108 DOI: 10.7717/peerj.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/18/2013] [Indexed: 11/20/2022] Open
Abstract
Ecological processes that determine the abundance of species within ecological communities vary across space and time. These scale-dependent processes are especially important when they affect key members of a community, such as ecosystem engineers that create shelter and food resources for other species. Yet, few studies have examined the suite of processes that shape the abundance of ecosystem engineers. Here, we evaluated the relative influence of temporal variation, local processes, and latitude on the abundance of an engineering insect-a rosette-galling midge, Rhopalomyia solidaginis (Diptera: Cecidomyiidae). Over a period of 3-5 years, we studied the density and size of galls across a suite of local experiments that manipulated genetic variation, soil nutrient availability, and the removal of other insects from the host plant, Solidago altissima (tall goldenrod). We also surveyed gall density within a single growing season across a 2,300 km latitudinal transect of goldenrod populations in the eastern United States. At the local scale, we found that host-plant genotypic variation was the best predictor of rosette gall density and size within a single year. We found that the removal of other insect herbivores resulted in an increase in gall density and size. The amendment of soil nutrients for four years had no effect on gall density, but galls were smaller in carbon-added plots compared to control and nitrogen additions. Finally, we observed that gall density varied several fold across years. At the biogeographic scale, we observed that the density of rosette gallers peaked at mid-latitudes. Using meta-analytic approaches, we found that the effect size of time, followed by host-plant genetic variation and latitude were the best predictors of gall density. Taken together, our study provides a unique comparison of multiple factors across different spatial and temporal scales that govern engineering insect herbivore density.
Collapse
|
15
|
Vieira C, Romero GQ. Ecosystem engineers on plants: indirect facilitation of arthropod communities by leaf-rollers at different scales. Ecology 2013; 94:1510-8. [DOI: 10.1890/12-1151.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Sigmon E, Lill JT. Phenological variation in the composition of a temperate forest leaf tie community. ENVIRONMENTAL ENTOMOLOGY 2013; 42:29-37. [PMID: 23339783 DOI: 10.1603/en12064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Arthropod communities in an array of temperate ecosystems follow similar phenological patterns of distinct compositional turnovers during the course of a season. The arthropod community inhabiting leaf ties is no exception. Many caterpillars build leaf ties, shelters between overlapping leaves attached together with silk, which are colonized secondarily by a variety of arthropods. We created experimental leaf ties by clipping overlapping leaves together with metal clips. We censused the arthropod community within experimental ties on two host plants, American beech (Fagus grandifolia Ehrhart), and white oak (Quercus alba L.), weekly for 10 wk during the summer of 2009. Diversity measures for leaf-tying caterpillars and the entire arthropod community within ties varied little between tree species and sampling periods, but caterpillar and arthropod density per tie was significantly higher on white oak than beech and abundance increased on both tree species as the season progressed. The composition (i.e., species presence and abundance) of the leaf-tying caterpillar community and the arthropod community as a whole differed between host-tree species and sampling periods. Although the arthropod communities on American beech and white oak differed, they showed similar patterns of compositional turnover, with distinct communities in early and late summer and a transitional community midsummer.
Collapse
Affiliation(s)
- Elisha Sigmon
- Department of Biological Sciences, George Washington University, 2023 G Street NW, Suite 340, Washington, DC 20052, USA.
| | | |
Collapse
|
17
|
Wang HG, Marquis RJ, Baer CS. Both host plant and ecosystem engineer identity influence leaf-tie impacts on the arthropod community ofQuercus. Ecology 2012. [PMID: 23185880 DOI: 10.1890/11-1838.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- H George Wang
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, USA.
| | | | | |
Collapse
|
18
|
Bächtold A, Del-Claro K, Kaminski LA, Freitas AV, Oliveira PS. Natural history of an ant–plant–butterfly interaction in a Neotropical savanna. J NAT HIST 2012. [DOI: 10.1080/00222933.2011.651649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Barbehenn RV, Peter Constabel C. Tannins in plant-herbivore interactions. PHYTOCHEMISTRY 2011; 72:1551-65. [PMID: 21354580 DOI: 10.1016/j.phytochem.2011.01.040] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 05/07/2023]
Abstract
Tannins are the most abundant secondary metabolites made by plants, commonly ranging from 5% to 10% dry weight of tree leaves. Tannins can defend leaves against insect herbivores by deterrence and/or toxicity. Contrary to early theories, tannins have no effect on protein digestion in insect herbivores. By contrast, in vertebrate herbivores tannins can decrease protein digestion. Tannins are especially prone to oxidize in insects with high pH guts, forming semiquinone radicals and quinones, as well as other reactive oxygen species. Tannin toxicity in insects is thought to result from the production of high levels of reactive oxygen species. Tannin structure has an important effect on biochemical activity. Ellagitannins oxidize much more readily than do gallotannins, which are more oxidatively active than most condensed tannins. The ability of insects to tolerate ingested tannins comes from a variety of biochemical and physical defenses in their guts, including surfactants, high pH, antioxidants, and a protective peritrophic envelope that lines the midgut. Most work on the ecological roles of tannins has been correlative, e.g., searching for negative associations between tannins and insect performance. A greater emphasis on manipulative experiments that control tannin levels is required to make further progress on the defensive functions of tannins. Recent advances in the use of molecular methods has permitted the production of tannin-overproducing transgenic plants and a better understanding of tannin biosynthetic pathways. Many research areas remain in need of further work, including the effects of different tannin types on different types of insects (e.g., caterpillars, grasshoppers, sap-sucking insects).
Collapse
Affiliation(s)
- Raymond V Barbehenn
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
20
|
Kozlov MV, Lanta V, Zverev VE, Zvereva EL. Delayed local responses of downy birch to damage by leafminers and leafrollers. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19625.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|