1
|
Kharouba HM. Shifting the paradigm: The role of introduced plants in the resiliency of terrestrial ecosystems to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17319. [PMID: 38804095 DOI: 10.1111/gcb.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Current ecological communities are in a constant state of flux from climate change and from species introductions. Recent discussion has focused on the positive roles introduced species can play in ecological communities and on the importance of conserving resilient ecosystems, but not how these two ideas intersect. There has been insufficient work to define the attributes needed to support ecosystem resilience to climate change in modern communities. Here, I argue that non-invasive, introduced plant species could play an important role in supporting the resilience of terrestrial ecosystems to climate change. Using examples from multiple taxonomic groups and ecosystems, I discuss how introduced plants can contribute to ecosystem resilience via their roles in plant and insect communities, as well as their associated ecosystem functions. I highlight the current and potential contributions of introduced plants and where there are critical knowledge gaps. Determining when and how introduced plants are contributing to the resilience of ecosystems to climate change will contribute to effective conservation strategies.
Collapse
|
2
|
Michielini JP, Yi X, Brown LM, Gao SM, Orians C, Crone EE. Novel host plant use by a specialist insect depends on geographic variation in both the host and herbivore species. Oecologia 2024; 204:95-105. [PMID: 38123786 PMCID: PMC10830605 DOI: 10.1007/s00442-023-05490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore, Euphydryas phaeton. In parts of its range, E. phaeton uses only a native host, Chelone glabra, while in others, it also uses an introduced host, Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.
Collapse
Affiliation(s)
- James P Michielini
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| | - Xianfeng Yi
- College of Life Science, Qufu Normal University, Qufu, China
| | - Leone M Brown
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Biology Department, James Madison University, Harrisonburg, VA, 22807, USA
| | - Shan Ming Gao
- Biology Department, Pomona College, Claremont, CA, 91711, USA
| | - Colin Orians
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Elizabeth E Crone
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Braga MP. Are exotic host plants a life raft or a trap for butterflies? CURRENT OPINION IN INSECT SCIENCE 2023; 58:101074. [PMID: 37290695 DOI: 10.1016/j.cois.2023.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Many landscapes across the world are dominated by exotic (non-native) plant species. These plants can directly impact native species, including insect herbivores. There are many reported cases of native butterfly species using exotic host plants, and these new interactions have had diverse effects on butterfly populations. In this mini-review, I highlight recent developments in the study of the effects of exotic host plants on butterflies, focusing on two areas that have seen major advances: the genetic basis of host use and the influence of other trophic levels on butterfly-plant interactions. Understanding how these multiple factors interact is a key outstanding question for better predicting if an exotic plant might be a trap or a life raft for a herbivorous insect.
Collapse
Affiliation(s)
- Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden; HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Mo C, Smilanich AM. Feeding on an exotic host plant enhances plasma levels of phenoloxidase by modulating feeding efficiency in a specialist insect herbivore. Front Physiol 2023; 14:1127670. [PMID: 36909228 PMCID: PMC9998540 DOI: 10.3389/fphys.2023.1127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye (Junonia coenia: Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it.
Collapse
Affiliation(s)
- Carmen Mo
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Angela M Smilanich
- Department of Biology, University of Nevada, Reno, NV, United States.,Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
5
|
Steward RA, Epanchin‐Niell RS, Boggs CL. Novel host unmasks heritable variation in plant preference within an insect population. Evolution 2022; 76:2634-2648. [PMID: 36111364 PMCID: PMC9827926 DOI: 10.1111/evo.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/19/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
Introductions of novel plant species can disturb the historical resource environment of herbivorous insects, resulting in strong selection to either adopt or exclude the novel host. However, an adaptive response depends on heritable genetic variation for preference or performance within the targeted herbivore population, and it is unclear how heritability of host-use preference may differ between novel and historical hosts. Pieris macdunnoughii butterflies in the Rocky Mountains lay eggs on the nonnative mustard Thlaspi arvense, which is lethal to their offspring. Heritability analyses revealed considerable sex-linked additive genetic variation in host preference within a population of this butterfly. This was contrary to general predictions about the genetic basis of preference variation, which are hypothesized to be sex linked between populations but autosomal within populations. Evidence of sex linkage disappeared when butterflies were tested on methanol-based chemical extracts, suggesting these chemicals in isolation may not be the primary driver of female choice among available host plants. Although unexpected, evidence for within-population sex-linked genetic variation in preference for T. arvense over native hosts indicates that persistent maladaptive oviposition on this lethal plant must be maintained by alternative evolutionary dynamics such as migration- or drift-selection balance or pleiotropic constraints.
Collapse
Affiliation(s)
- Rachel A. Steward
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth Carolina29208,Rocky Mountain Biological LaboratoryCrested ButteColorado81224,Department of ZoologyStockholm UniversitySE‐10691StockholmSweden29208
| | - Rebecca S. Epanchin‐Niell
- Rocky Mountain Biological LaboratoryCrested ButteColorado81224,College of Agriculture and Natural ResourcesUniversity of MarylandCollege ParkMaryland20742
| | - Carol L. Boggs
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth Carolina29208,Rocky Mountain Biological LaboratoryCrested ButteColorado81224,School of the Earth, Ocean, and EnvironmentUniversity of South CarolinaColumbiaSouth Carolina29208
| |
Collapse
|
6
|
Singer MC, Parmesan C. Colonizations cause diversification of host preferences: A mechanism explaining increased generalization at range boundaries expanding under climate change. GLOBAL CHANGE BIOLOGY 2021; 27:3505-3518. [PMID: 33896082 DOI: 10.1111/gcb.15656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
As species' poleward range limits expand under climate change, generalists are expected to be better colonists than specialists, extending their ranges faster. This effect of specialization on range shifts has been shown, but so has the reverse cause-effect: in a global meta-analysis of butterfly diets, it was range expansions themselves that caused increases in population-level diet breadth. What could drive this unexpected process? We provide a novel behavioral mechanism by showing that, in a butterfly with extensive ecotypic variation, Edith's checkerspot, diet breadths increased after colonization events as diversification of individual host preferences pulled novel hosts into population diets. Subsequently, populations that persisted reverted toward monophagy. We draw together three lines of evidence from long-term studies of 15 independently evolving populations. First, direct observations showed a significant increase in specialization across decades: in recent censuses, eight populations used fewer host genera than in the 1980s while none used more. Second, behavioral preference-testing experiments showed that extinctions and recolonizations at two sites were followed, at first by diversification of heritable preference ranks and increases in diet breadth, and subsequently by homogenization of preferences and contractions of diet breadth. Third, we found a significant negative association in the 1980s between population-level diet breadth and genetic diversity. Populations with fewer mtDNA haplotypes had broader diets, extending to 3-4 host genera, while those with higher haplotype diversity were more specialized. We infer that diet breadth had increased in younger, recently colonized populations. Preference diversification after colonization events, whether caused by (cryptic) host shifts or by release of cryptic genetic variation after population bottlenecks, provides a mechanism for known effects of range shifts on diet specialization. Our results explain how colonizations at expanding range margins have increased population-level diet breadths, and predict that increasing specialization should accompany population persistence as current range edges become range interiors.
Collapse
Affiliation(s)
- Michael C Singer
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
- Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Camille Parmesan
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
- Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Nielsen DP, Matocq MD. Differences in dietary composition and preference maintained despite gene flow across a woodrat hybrid zone. Ecol Evol 2021; 11:4909-4919. [PMID: 33976858 PMCID: PMC8093690 DOI: 10.1002/ece3.7399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022] Open
Abstract
Ecotones, characterized by adjacent yet distinct biotic communities, provide natural laboratories in which to investigate how environmental selection influences the ecology and evolution of organisms. For wild herbivores, differential plant availability across sharp ecotones may be an important source of dietary-based selection.We studied small herbivore diet composition across a sharp ecotone where two species of woodrat, Neotoma bryanti and N. lepida, come into secondary contact with one another and hybridize. We quantified woodrat dietary preference through trnL metabarcoding of field-collected fecal pellets and experimental choice trials. Despite gene flow, parental N. bryanti and N. lepida maintain distinct diets across this fine spatial scale, and across temporal scales that span both wet and dry conditions. Neotoma bryanti maintained a more diverse diet, with Frangula californica (California coffeeberry) making up a large portion of its diet. Neotoma lepida maintains a less diverse diet, with Prunus fasciculata (desert almond) comprising more than half of its diet. Both F. californica and P. fasciculata are known to produce potentially toxic plant secondary compounds (PSCs), which should deter herbivory, yet these plants have relatively high nutritional value as measured by crude protein content. Neotoma bryanti and N. lepida consumed F. californica and P. fasciculata, respectively, in greater abundance than these plants are available on the landscape-indicating dietary selection. Finally, experimental preference trials revealed that N. bryanti exhibited a preference for F. californica, while N. lepida exhibited a relatively stronger preference for P. fasciculata. We find that N. bryanti exhibit a generalist herbivore strategy relative to N. lepida, which exhibit a more specialized feeding strategy in this study system.Our results suggest that woodrats respond to fine-scale environmental differences in plant availability that may require different metabolic strategies in order to balance nutrient acquisition while minimizing exposure to potentially toxic PSCs.
Collapse
Affiliation(s)
- Danny P. Nielsen
- Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoNVUSA
- Graduate Program in EECBUniversity of NevadaRenoNVUSA
| | - Marjorie D. Matocq
- Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoNVUSA
- Graduate Program in EECBUniversity of NevadaRenoNVUSA
| |
Collapse
|
8
|
Forister ML, Philbin CS, Marion ZH, Buerkle CA, Dodson CD, Fordyce JA, Forister GW, Lebeis SL, Lucas LK, Nice CC, Gompert Z. Predicting patch occupancy reveals the complexity of host range expansion. SCIENCE ADVANCES 2020; 6:6/48/eabc6852. [PMID: 33246956 PMCID: PMC7695468 DOI: 10.1126/sciadv.abc6852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Specialized plant-insect interactions are a defining feature of life on earth, yet we are only beginning to understand the factors that set limits on host ranges in herbivorous insects. To better understand the recent adoption of alfalfa as a host plant by the Melissa blue butterfly, we quantified arthropod assemblages and plant metabolites across a wide geographic region while controlling for climate and dispersal inferred from population genomic variation. The presence of the butterfly is successfully predicted by direct and indirect effects of plant traits and interactions with other species. Results are consistent with the predictions of a theoretical model of parasite host range in which specialization is an epiphenomenon of the many barriers to be overcome rather than a consequence of trade-offs in developmental physiology.
Collapse
Affiliation(s)
- M L Forister
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA
| | - C S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | - Z H Marion
- Bio-protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - C A Buerkle
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - C D Dodson
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | - J A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G W Forister
- Bohart Museum of Entomology, University of California, Davis, Davis, CA 95616, USA
| | - S L Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - L K Lucas
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - C C Nice
- Population and Conservation Biology, Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Z Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
9
|
Ruland F, Jeschke JM. How biological invasions affect animal behaviour: A global, cross-taxonomic analysis. J Anim Ecol 2020; 89:2531-2541. [PMID: 32745238 DOI: 10.1111/1365-2656.13306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
In the Anthropocene, species are faced with drastic challenges due to rapid, human-induced changes, such as habitat destruction, pollution and biological invasions. In the case of invasions, native species may change their behaviour to minimize the impacts they sustain from invasive species, and invaders may also adapt to the conditions in their new environment in order to survive and establish self-sustaining populations. We aimed at giving an overview of which changes in behaviour are studied in invasions, and what is known about the types of behaviour that change, the underlying mechanisms and the speed of behavioural changes. Based on a review of the literature, we identified 191 studies and 360 records (some studies reported multiple records) documenting behavioural changes caused by biological invasions in native (236 records from 148 species) or invasive (124 records from 50 species) animal species. This global dataset, which we make openly available, is not restricted to particular taxonomic groups. We found a mild taxonomic bias in the literature towards mammals, birds and insects. In line with the enemy release hypothesis, native species changed their anti-predator behaviour more frequently than invasive species. Rates of behavioural change were evenly distributed across taxa, but not across the types of behaviour. Our findings may help to better understand the role of behaviour in biological invasions as well as temporal changes in both population densities and traits of invasive species, and of native species affected by them.
Collapse
Affiliation(s)
- Florian Ruland
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jonathan M Jeschke
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
10
|
Forister ML, Yoon SA, Philbin CS, Dodson CD, Hart B, Harrison JG, Shelef O, Fordyce JA, Marion ZH, Nice CC, Richards LA, Buerkle CA, Gompert Z. Caterpillars on a phytochemical landscape: The case of alfalfa and the Melissa blue butterfly. Ecol Evol 2020; 10:4362-4374. [PMID: 32489603 PMCID: PMC7246198 DOI: 10.1002/ece3.6203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Modern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant-animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides melissa) to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance. We find that survival, development time, and adult weight are all associated with variation in nutrition and toxicity, including biomolecules associated with plant cell function as well as putative anti-herbivore action. The plant-insect interface is complex, with clusters of covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar performance. Individual compounds with the strongest associations are largely specialized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins are represented in our data by more than 25 individual compounds with beneficial and detrimental effects on L. melissa caterpillars, which highlights the value of metabolomic data as opposed to approaches that rely on total concentrations within broad defensive classes.
Collapse
Affiliation(s)
- Matthew L. Forister
- Department of BiologyProgram in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
| | - Su'ad A. Yoon
- Department of BiologyProgram in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
| | - Casey S. Philbin
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
- Department of ChemistryUniversity of NevadaRenoNVUSA
| | - Craig D. Dodson
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
- Department of ChemistryUniversity of NevadaRenoNVUSA
| | - Bret Hart
- Department of BiochemistryUniversity of NevadaRenoNVUSA
| | - Joshua G. Harrison
- Department of Botany and Program in EcologyUniversity of WyomingLaramieWYUSA
| | - Oren Shelef
- Department of Natural ResourcesInstitute of Plant SciencesVolcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - James A. Fordyce
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTNUSA
| | | | - Chris C. Nice
- Department of Biology, Population and Conservation BiologyTexas State UniversitySan MarcosTXUSA
| | - Lora A. Richards
- Department of BiologyProgram in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Hitchcock Center for Chemical EcologyUniversity of NevadaRenoNVUSA
| | - C. Alex Buerkle
- Department of Botany and Program in EcologyUniversity of WyomingLaramieWYUSA
| | - Zach Gompert
- Department of BiologyUtah State UniversityLoganUTUSA
| |
Collapse
|
11
|
Gompert Z, Brady M, Chalyavi F, Saley TC, Philbin CS, Tucker MJ, Forister ML, Lucas LK. Genomic evidence of genetic variation with pleiotropic effects on caterpillar fitness and plant traits in a model legume. Mol Ecol 2019; 28:2967-2985. [DOI: 10.1111/mec.15113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/17/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Megan Brady
- Department of Biology Utah State University Logan Utah USA
| | | | - Tara C. Saley
- Department of Biology Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | | | | | | | | |
Collapse
|
12
|
Morrison CR, Aubert C, Windsor DM. Variation in Host Plant Usage and Diet Breadth Predict Sibling Preference and Performance in the Neotropical Tortoise Beetle Chelymorpha alternans (Coleoptera: Chrysomelidae: Cassidinae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:382-394. [PMID: 30753405 DOI: 10.1093/ee/nvy194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
Specialized interactions between insects and the plants that they consume are one of the most ubiquitous and consequential ecological associations on the plant. Decades of investigation suggest that a narrow diet favors an individual phytophagous insect's performance relative to a dietary generalist. However, this body of research has tended to approach questions of diet breadth and host usage from the perspective of temperate plant-insect associations. Relationships between diet breadth, host usage, and variation in tropical insect preference and performance remain largely uninvestigated. Here we characterize how variation in diet breadth and host usage affect oviposition preference, development, survival, and gain in mass of a Neotropical tortoise beetle Chelymorpha alternans Boheman 1854 (Coleoptera: Chrysomelidae), using a split-brood, sibling experimental design. Host performance was measured after splitting broods among four no-choice host diets. Groups consuming single hosts varied among themselves in developmental time and survival from larva to adult. Performance did not vary among groups consuming multiple and single hosts. Oviposition preference was measured in choice and no-choice tests. Females displayed preference for the original host in both experiments. Developmental time and survival of offspring sourced from the no-choice experiment was measured for two complete generations to explore correlations with female oviposition preference. Preference for the original host correlated with high survivorship and an intermediate developmental time. Survivorship and time to develop were also high on an alternative host that was less preferred. Departures from predictions of prevailing preference-performance hypotheses suggest that host usage presents C. alternans with fitness trade-offs.
Collapse
Affiliation(s)
- Colin R Morrison
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| | - Clément Aubert
- Département Biologie Écologie, Université de Montpellier, Montpellier, France
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| | - Donald M Windsor
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| |
Collapse
|
13
|
Larose C, Rasmann S, Schwander T. Evolutionary dynamics of specialisation in herbivorous stick insects. Ecol Lett 2018; 22:354-364. [DOI: 10.1111/ele.13197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/01/2018] [Accepted: 11/10/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Chloé Larose
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - Sergio Rasmann
- Institute of Biology; University of Neuchatel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
14
|
Chaturvedi S, Lucas LK, Nice CC, Fordyce JA, Forister ML, Gompert Z. The predictability of genomic changes underlying a recent host shift in Melissa blue butterflies. Mol Ecol 2018; 27:2651-2666. [DOI: 10.1111/mec.14578] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Samridhi Chaturvedi
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | | | | | | | | | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
15
|
Lucas LK, Nice CC, Gompert Z. Genetic constraints on wing pattern variation in
Lycaeides
butterflies: A case study on mapping complex, multifaceted traits in structured populations. Mol Ecol Resour 2018. [DOI: 10.1111/1755-0998.12777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Chris C. Nice
- Department of Biology Texas State University San Marcos TX USA
| | - Zachariah Gompert
- Department of Biology Utah State University Logan UT USA
- Ecology Center Utah State University Logan UT USA
| |
Collapse
|
16
|
Holm S, Javoiš J, Õunap E, Davis RB, Kaasik A, Molleman F, Tasane T, Tammaru T. Reproductive behaviour indicates specificity in resource use: phylogenetic examples from temperate and tropical insects. OIKOS 2018. [DOI: 10.1111/oik.04959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sille Holm
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| | - Juhan Javoiš
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| | - Erki Õunap
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
- Inst. of Agricultural and Environmental Sciences, Estonian Univ. of Life Sciences; Tartu Estonia
| | - Robert B. Davis
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| | - Ants Kaasik
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| | - Freerk Molleman
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
- Dept of Systematic Zoology; Inst. of Environmental Biology, Faculty of Biology, A. Mickiewicz Univ.; Poznań Poland
| | - Tõnis Tasane
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| | - Toomas Tammaru
- Inst. of Ecology and Earth Sciences, Univ. of Tartu; Vanemuise 46 EE-51014 Tartu Estonia
| |
Collapse
|
17
|
Schäpers A, Petrén H, Wheat CW, Wiklund C, Friberg M. Female fecundity variation affects reproducibility of experiments on host plant preference and acceptance in a phytophagous insect. Proc Biol Sci 2017; 284:20162643. [PMID: 28202813 PMCID: PMC5326532 DOI: 10.1098/rspb.2016.2643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 11/12/2022] Open
Abstract
Reproducibility is a scientific cornerstone. Many recent studies, however, describe a reproducibility crisis and call for assessments of reproducibility across scientific domains. Here, we explore the reproducibility of a classic ecological experiment-that of assessing female host plant preference and acceptance in phytophagous insects, a group in which host specialization is a key driver of diversification. We exposed multiple cohorts of Pieris napi butterflies from the same population to traditional host acceptance and preference tests on three Brassicaceae host species. Whereas the host plant rank order was highly reproducible, the propensity to oviposit on low-ranked hosts varied significantly even among cohorts exposed to similar conditions. Much variation could be attributed to among-cohort variation in female fecundity, a trait strongly correlated both to female size and to the size of the nuptial gift a female receives during mating. Small males provide small spermatophores, and in our experiment small females that mated with small males had a disproportionally low propensity to oviposit on low-ranked hosts. Hence, our results provide empirical support to the theoretical prediction that female host utilization is strongly affected by non-genetic, environmental variation, and that such variation can affect the reproducibility of ecological experiments even under seemingly identical conditions.
Collapse
Affiliation(s)
| | - Hampus Petrén
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, EBC, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | | | - Christer Wiklund
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Magne Friberg
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, EBC, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| |
Collapse
|
18
|
An exploration of the fungal assemblage in each life history stage of the butterfly, Lycaeides melissa (Lycaenidae), as well as its host plant Astragalus canadensis (Fabaceae). FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Smilanich AM, Fincher RM, Dyer LA. Does plant apparency matter? Thirty years of data provide limited support but reveal clear patterns of the effects of plant chemistry on herbivores. THE NEW PHYTOLOGIST 2016; 210:1044-1057. [PMID: 26889654 DOI: 10.1111/nph.13875] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
According to the plant-apparency hypothesis, apparent plants allocate resources to quantitative defenses that negatively affect generalist and specialist herbivores, while unapparent plants invest more in qualitative defenses that negatively affect nonadapted generalists. Although this hypothesis has provided a useful framework for understanding the evolution of plant chemical defense, there are many inconsistencies surrounding associated predictions, and it has been heavily criticized and deemed obsolete. We used a hierarchical Bayesian meta-analysis model to test whether defenses from apparent and unapparent plants differ in their effects on herbivores. We collected a total of 225 effect sizes from 158 published papers in which the effects of plant chemistry on herbivore performance were reported. As predicted by the plant-apparency hypothesis, we found a prevalence of quantitative defenses in woody plants and qualitative defenses in herbaceous plants. However, the detrimental impacts of qualitative defenses were more effective against specialists than generalists, and the effects of chemical defenses did not significantly differ between specialists and generalists for woody or herbaceous plants. A striking pattern that emerged from our data was a pervasiveness of beneficial effects of secondary metabolites on herbivore performance, especially generalists. This pattern provides evidence that herbivores are evolving effective counteradaptations to putative plant defenses.
Collapse
Affiliation(s)
- Angela M Smilanich
- Department of Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| | - R Malia Fincher
- Department of Biology, Samford University, 800 Lakeshore Dr., Birmingham, AL, 35229, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, 1664 N. Virginia St, Reno, NV, 89557, USA
| |
Collapse
|
20
|
The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host. PLoS One 2016; 11:e0147971. [PMID: 26836490 PMCID: PMC4737494 DOI: 10.1371/journal.pone.0147971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa) onto an exotic host plant (alfalfa, Medicago sativa). We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history.
Collapse
|
21
|
Gompert Z, Jahner JP, Scholl CF, Wilson JS, Lucas LK, Soria-Carrasco V, Fordyce JA, Nice CC, Buerkle CA, Forister ML. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol Ecol 2015; 24:2777-93. [DOI: 10.1111/mec.13199] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology; Utah State University; 5305 Old Main Hill Logan UT 84322-5305 USA
| | | | | | - Joseph S. Wilson
- Department of Biology; University of Nevada; Reno NV 89557 USA
- Department of Biology; Utah State University; Tooele UT 84074 USA
| | - Lauren K. Lucas
- Department of Biology; Utah State University; 5305 Old Main Hill Logan UT 84322-5305 USA
- Department of Biology; Texas State University; San Marcos TX 78666 USA
| | - Victor Soria-Carrasco
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - James A. Fordyce
- Department of Ecology & Evolutionary Biology; University of Tennessee; Knoxville TN 37996 USA
| | - Chris C. Nice
- Department of Biology; Texas State University; San Marcos TX 78666 USA
| | - C. Alex Buerkle
- Department of Botany and Program in Ecology; University of Wyoming; Laramie WY 82071 USA
| | | |
Collapse
|
22
|
Jahner JP, Lucas LK, Wilson JS, Forister ML. Morphological outcomes of gynandromorphism in Lycaeides butterflies (Lepidoptera: Lycaenidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev020. [PMID: 25843591 PMCID: PMC7175718 DOI: 10.1093/jisesa/iev020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
The genitalia of male insects have been widely used in taxonomic identification and systematics and are potentially involved in maintaining reproductive isolation between species. Although sexual selection has been invoked to explain patterns of morphological variation in genitalia among populations and species, developmental plasticity in genitalia likely contributes to observed variation but has been rarely examined, particularly in wild populations. Bilateral gynandromorphs are individuals that are genetically male on one side of the midline and genetically female on the other, while mosaic gynandromorphs have only a portion of their body developing as the opposite sex. Gynandromorphs might offer unique insights into developmental plasticity because individuals experience abnormal cellular interactions at the genitalic midline. In this study, we compare the genitalia and wing patterns of gynandromorphic Anna and Melissa blue butterflies, Lycaeides anna (Edwards) (formerly L. idas anna) and L. melissa (Edwards) (Lepidoptera: Lycaenidae), to the morphology of normal individuals from the same populations. Gynandromorph wing markings all fell within the range of variation of normal butterflies; however, a number of genitalic measurements were outliers when compared with normal individuals. From these results, we conclude that the gynandromorphs' genitalia, but not wing patterns, can be abnormal when compared with normal individuals and that the gynandromorphic genitalia do not deviate developmentally in a consistent pattern across individuals. Finally, genetic mechanisms are considered for the development of gynandromorphism in Lycaeides butterflies.
Collapse
Affiliation(s)
- Joshua P Jahner
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lauren K Lucas
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Joseph S Wilson
- Department of Biology, Utah State University, Tooele, UT 84074, USA
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
23
|
Gompert Z, Lucas LK, Buerkle CA, Forister ML, Fordyce JA, Nice CC. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol Ecol 2014; 23:4555-73. [DOI: 10.1111/mec.12811] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Affiliation(s)
| | - Lauren K. Lucas
- Department of Biology; Utah State University; Logan UT 84322 USA
- Department of Biology; Texas State University; San Marcos TX 78666 USA
| | - C. Alex Buerkle
- Department of Botany and Program in Ecology; University of Wyoming; Laramie WY 82071 USA
| | | | - James A. Fordyce
- Department of Ecology & Evolutionary Biology; University of Tennessee; Knoxville TN 37996 USA
| | - Chris C. Nice
- Department of Biology; Texas State University; San Marcos TX 78666 USA
| |
Collapse
|
24
|
Messina FJ, Durham SL. Adaptation to a novel host by a seed beetle (Coleoptera: Chrysomelidae: Bruchinae): effect of source population. ENVIRONMENTAL ENTOMOLOGY 2013; 42:733-742. [PMID: 23905736 DOI: 10.1603/en13066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Geographic populations of a widespread species can differ in their ability to adapt to a novel environment because they possess different amounts of the requisite genetic variation. We compared responses to the same novel host in ecologically and genetically divergent populations of the seed beetle Callosobruchus maculatus (F.). Populations from Africa and Asia had been derived from and maintained on different legume hosts. In preselection assays, both populations exhibited lower survival, slower development, and smaller size on a third host (adzuki bean), and the difference in performance between the ancestral and novel hosts was especially high for the African population. Replicate lines of each population were switched to adzuki bean or maintained on the ancestral host, and beetle performance was measured on both hosts after 12 generations. Survival on adzuki bean increased substantially in the adzuki-bean lines of the African population, but improved only slightly in the Asian lines. Similarly, only the African adzuki-bean lines exhibited significantly faster development on adzuki bean. Improved performance on adzuki bean did not simultaneously reduce performance on the ancestral host. Together with previous studies, these results confirm that populations of C. maculatus often possess sufficient standing genetic variation for rapid adaptation to a novel host, but the magnitude of the response may depend on the source population. Although international trade in grain legumes can expand beetle host ranges and produce unusual biotypes, the consistent absence of strong genetic trade-offs in larval performance or adult oviposition across hosts makes it unlikely that this insect would form distinct host races.
Collapse
Affiliation(s)
- Frank J Messina
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA.
| | | |
Collapse
|