1
|
Rigano L, Schmitz M, Hollert H, Linnemann V, Krauss M, Pfenninger M. Mind your tyres: The ecotoxicological impact of urban sediments on an aquatic organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175597. [PMID: 39155001 DOI: 10.1016/j.scitotenv.2024.175597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The presence of tyre and road wear particles (TRWP) in the environment is an underestimated threat due to their potential impact on ecosystems and human health. However, their mode of action and potential impacts on aquatic ecosystems remain largely unknown. In the present study, we adopted a sediment exposure scenario to investigate the influence of sediment coming from an urban runoff sedimentation basin on the life cycle of Chironomus riparius. Targeted broad-spectrum chemical analysis helped to characterise the urban sediments and confirmed the significant contribution of contaminants from traffic (e.g. tyre wear contribution, Polycyclic Aromatic Hydrocarbons [PAHs], metals, tyre rubber additives). First-stage chironomid larvae were subjected to increasing concentrations of urban whole sediment. The results showed that exposure to this urban sediment influenced all measured endpoints. In vivo quantification of ROS showed that larvae exposed to the lowest concentration of contaminated sediment exhibited increased fluorescence. The contaminated sediment conditions increased mortality by almost 30 %, but this effect was surprisingly not concentration-dependent. Fertility decreased significantly and concentration-dependently. The results of the Mean Emergence Time (EmT50) and larval size showed an optimality curve. Furthermore, as a consequence of the effects on fitness, the Population Growth Rate (PGR) exhibited a significant decrease, which was concentration-dependent. Therefore, after a single generation, PGR calculation can be adopted as a sensitive tool to monitor pollution caused by complex matrices, i.e. composed of several contaminants. Our research highlights the importance of effective management of road runoff and underlines the need for further investigation to better understand the toxicity of TRWPs.
Collapse
Affiliation(s)
- Lorenzo Rigano
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| | - Markus Schmitz
- Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany
| | - Henner Hollert
- LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Department of Evolutionary Ecology & Environmental Toxicology (E3T), Institute for Ecology, Evolution and Diversity, Faculty 15 Biological Sciences, Goethe University Frankfurt am Main, Germany
| | - Volker Linnemann
- Institute for Environmental Engineering, RWTH Aachen University, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128 Mainz, Germany
| |
Collapse
|
2
|
Binde Doria H, Wagner V, Foucault Q, Pfenninger M. Unveiling population-specific outcomes: Examining life cycle traits of different strains of Chironomus riparius exposed to microplastics and cadmium questions generality of ecotoxicological results. PLoS One 2024; 19:e0304739. [PMID: 38985709 PMCID: PMC11236181 DOI: 10.1371/journal.pone.0304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 07/12/2024] Open
Abstract
Ecotoxicological tests used for risk assessment of toxicants and its mixtures rely both on classical life-cycle endpoints and bioindicator organisms usually derived from long-term laboratory cultures. While these cultures are thought to be comparable among laboratories and more sensitive than field organisms, it is not well investigated whether this assumption is met. Therefore, we aimed to investigate differential life-cycle endpoints response of two different strains of C. riparius, one originally from Spain and the other from Germany, kept under the same laboratory conditions for more than five years. To highlight any possible differences, the two populations were challenged with exposure to cadmium (Cd), polyvinyl chloride (PVC) microplastics and a co-exposure with both. Our results showed that significant differences between the strains became evident with the co-exposure of Cd and PVC MPs. The German strain showed attenuation of the deleterious Cd effects with microplastic co-exposure in survival and developmental time. Contrary to that, the Spanish strain showed no interaction between the substances. In conclusion, the toxicity-effects of contaminants may vary strongly among laboratory populations, which makes a universal risk assessment evaluation challenging.
Collapse
Affiliation(s)
- Halina Binde Doria
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Vivian Wagner
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Quentin Foucault
- Department Evolutionary Genetics, Bielefeld University, Bielefeld, Germany
| | - Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Bulut B, Rigano L, Doria HB, Gemüth G, Pfenninger M. A multigenerational study can detect the evolutionary response to BaP exposure in the non-biting freshwater midge Chironomus riparius. CHEMOSPHERE 2024; 358:142242. [PMID: 38710409 DOI: 10.1016/j.chemosphere.2024.142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 μg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.
Collapse
Affiliation(s)
- Burak Bulut
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Lorenzo Rigano
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany.
| | - Halina Binde Doria
- LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Gajana Gemüth
- LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128, Mainz, Germany
| |
Collapse
|
4
|
Pfenninger M, Foucault Q, Waldvogel AM, Feldmeyer B. Selective effects of a short transient environmental fluctuation on a natural population. Mol Ecol 2023; 32:335-349. [PMID: 36282585 DOI: 10.1111/mec.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/21/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023]
Abstract
Natural populations experience continuous and often transient changes of environmental conditions. These in turn may result in fluctuating selection pressures leading to variable demographic and evolutionary population responses. Rapid adaptation as short-term response to a sudden environmental change has in several cases been attributed to polygenic traits, but the underlying genomic dynamics and architecture are poorly understood. In this study, we took advantage of a natural experiment in an insect population of the non-biting midge Chironomus riparius by monitoring genome-wide allele frequencies before and after a cold snap event. Whole genome pooled sequencing of time series samples revealed 10 selected haplotypes carrying ancient polymorphisms, partially with signatures of balancing selection. By constantly cold exposing genetically variable individuals in the laboratory, we could demonstrate with whole genome resequencing (i) that among the survivors, the same alleles rose in frequency as in the wild, and (ii) that the identified variants additively predicted fitness (survival time) of its bearers. Finally, by simultaneously sequencing the genome and the transcriptome of cold exposed individuals we could tentatively link some of the selected SNPs to the cis- and trans-regulation of genes and pathways known to be involved in cold response of insects, such as cytochrome P450 and fatty acid metabolism. Altogether, our results shed light on the strength and speed of selection in natural populations and the genomic architecture of its underlying polygenic trait. Population genomic time series data thus appear as promising tool for measuring the selective tracking of fluctuating selection in natural populations.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Quentin Foucault
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Ann-Marie Waldvogel
- Department of Ecological Genomics, Institute of Zoology, University of Cologne, Köln, Germany
| | - Barbara Feldmeyer
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Pfenninger M, Foucault Q. Population Genomic Time Series Data of a Natural Population Suggests Adaptive Tracking of Fluctuating Environmental Changes. Integr Comp Biol 2022; 62:1812-1826. [PMID: 35762661 DOI: 10.1093/icb/icac098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
Natural populations are constantly exposed to fluctuating environmental changes that negatively affect their fitness in unpredictable ways. While theoretical models show the possibility of counteracting these environmental changes through rapid evolutionary adaptations, there have been few empirical studies demonstrating such adaptive tracking in natural populations. Here, we analyzed environmental data, fitness-related phenotyping and genomic time-series data sampled over 3 years from a natural Chironomus riparius (Diptera, Insecta) population to address this question. We show that the population's environment varied significantly on the time scale of the sampling in many selectively relevant dimensions, independently of each other. Similarly, phenotypic fitness components evolved significantly on the same temporal scale (mean 0.32 Haldanes), likewise independent from each other. The allele frequencies of 367,446 SNPs across the genome showed evidence of positive selection. Using temporal correlation of spatially coherent allele frequency changes revealed 35,574 haplotypes with more than one selected SNP. The mean selection coefficient for these haplotypes was 0.30 (s.d. = 0.68). The frequency changes of these haplotypes clustered in 46 different temporal patterns, indicating concerted, independent evolution of many polygenic traits. Nine of these patterns were strongly correlated with measured environmental variables. Enrichment analysis of affected genes suggested the implication of a wide variety of biological processes. Thus, our results suggest overall that the natural population of C. riparius tracks environmental change through rapid polygenic adaptation in many independent dimensions. This is further evidence that natural selection is pervasive at the genomic level and that evolutionary and ecological time scales may not differ at all, at least in some organisms.
Collapse
Affiliation(s)
- Markus Pfenninger
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Quentin Foucault
- Department Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.,Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany
| |
Collapse
|
6
|
Doria HB, Caliendo C, Gerber S, Pfenninger M. Photoperiod is an important seasonal selection factor in Chironomus riparius (Diptera: Chironomidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Most organisms respond and can adapt to photoperiodic changes. This affects measurable end points like developmental time, survival and fertility. For ectotherms like Chironomus riparius, temperature is the most studied environmental cue regulating their life cycle, whereas photoperiodic influence is neglected. However, the developmental speed between summer and winter seasons of a field population could not be explained solely by temperature variations. Therefore, to have a comprehensive view on how photoperiods influence chironomid’s life cycle, we investigated if it plays a role in their development and if it acts as an important selective pressure on developmental time speed. To this end, first emerged C. riparius were artificially selected for seven generations. Pre-selected and unselected organisms could develop and breed independently under three light regimes: constant light (24:0 L:D), long days (16:8 L:D) and short days (8:16 L:D). Adult emergence, mean and median emergence time and fertility were integrated into the population growth rate to compare fitness. Our findings show that although developmental time is extended under short days, this same condition may exert a selective pressure towards a shorter development. Moreover, by also using photoperiodic clues to anticipate environmental changes, chironomids can potentially adapt to alterations in climate.
Collapse
Affiliation(s)
- Halina Binde Doria
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
| | - Cosima Caliendo
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Staudinger Weg, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Staudinger Weg, Mainz, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg, Mainz, Germany
| |
Collapse
|
7
|
Waldvogel AM, Pfenninger M. Temperature dependence of spontaneous mutation rates. Genome Res 2021; 31:1582-1589. [PMID: 34301628 PMCID: PMC8415371 DOI: 10.1101/gr.275168.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Mutation is the source of genetic variation and the fundament of evolution. Temperature has long been suggested to have a direct impact on realized spontaneous mutation rates. If mutation rates vary in response to environmental conditions, such as the variation of the ambient temperature through space and time, they should no longer be described as species-specific constants. By combining mutation accumulation with whole-genome sequencing in a multicellular organism, we provide empirical support to reject the null hypothesis of a constant, temperature-independent mutation rate. Instead, mutation rates depended on temperature in a U-shaped manner with increasing rates toward both temperature extremes. This relation has important implications for mutation-dependent processes in molecular evolution, processes shaping the evolution of mutation rates, and even the evolution of biodiversity as such.
Collapse
Affiliation(s)
- Ann-Marie Waldvogel
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, 60325 Frankfurt am Main, Germany
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
8
|
Doria HB, Pfenninger M. A multigenerational approach can detect early Cd pollution in Chironomus riparius. CHEMOSPHERE 2021; 262:127815. [PMID: 32768752 DOI: 10.1016/j.chemosphere.2020.127815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a non-essential highly toxic metal and its presence in the environment has been a concern over the years. On the present study we adopt the spiked water exposure scenario to study early Cd contamination across five generations of the model organism Chironomus riparius. Animals were, at the beginning of each generation, submitted to 0, 1, 3.2, 10, 32 and 100 μg/L of Cd. Classical endpoints like total emergence, EmT50, fertility and the integrative fitness measure, population growth rate (PGR), were calculated at each generation. Results could demonstrate that exposure to brief and low Cd concentrations can affect all the measured endpoints and, therefore, initial Cd pollution in previously unpolluted sites can be detected after just five consecutive generations. Importantly, at 100 μg/L of Cd fertility was greatly impaired after three generations. Also, PGR calculation is a sensitive tool for monitoring early pollution of Cd. Yet, no adaptation to Cd over five generations could be observed on the present experimental setup.
Collapse
Affiliation(s)
- Halina Binde Doria
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt Am Main, Germany.
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt Am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt Am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| |
Collapse
|
9
|
Pfenninger M, Foucault Q. Genomic processes underlying rapid adaptation of a natural
Chironomus riparius
population to unintendedly applied experimental selection pressures. Mol Ecol 2020; 29:536-548. [DOI: 10.1111/mec.15347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Markus Pfenninger
- Department of Molecular Ecology Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute for Molecular and Organismic Evolution Johannes Gutenberg University Mainz Germany
- LOEWE Centre for Translational Biodiversity Genomics Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
| | - Quentin Foucault
- Department of Molecular Ecology Senckenberg Biodiversity and Climate Research Centre Frankfurt am Main Germany
- Institute for Molecular and Organismic Evolution Johannes Gutenberg University Mainz Germany
| |
Collapse
|
10
|
Foucault Q, Wieser A, Heumann-Kiesler C, Diogo J, Cocchiararo B, Nowak C, Waldvogel AM, Pfenninger M. An experimental assessment of reproductive isolation and its consequences for seasonal hybridization dynamics. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Quentin Foucault
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg, Mainz, Germany
| | - Andreas Wieser
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg, Mainz, Germany
| | - Clara Heumann-Kiesler
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität, Frankfurt am Main, Germany
| | - Joao Diogo
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße, Gelnhausen, Germany
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße, Gelnhausen, Germany
| | - Ann-Marie Waldvogel
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg, Mainz, Germany
| |
Collapse
|
11
|
Foucault Q, Wieser A, Waldvogel A, Feldmeyer B, Pfenninger M. Rapid adaptation to high temperatures in Chironomus riparius. Ecol Evol 2018; 8:12780-12789. [PMID: 30619582 PMCID: PMC6308882 DOI: 10.1002/ece3.4706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Effects of seasonal or daily temperature variation on fitness and physiology of ectothermic organisms and their ways to cope with such variations have been widely studied. However, the way multivoltines organisms cope with temperature variations from one generation to the next is still not well understood. The aim of this study was to investigate whether the multivoltine midge Chironomus riparius Meigen (1803) responds mainly via acclimation as predicted by current theories or whether rapid genetic adaptation is involved. To investigate this issue, a common garden approach has been applied. A mix of larvae from five European populations was raised in the laboratory at three different pre-exposure temperatures (PET): 14, 20, and 26°C. After three and five generations, respectively, larvae were exposed to three treatment temperatures (TT): 14, 20, and 26°C. Mortality was monitored for the first 48 hr and after emergence. After three generations, significant mortality rate differences depended on an interaction of PET and TT. This finding supports the hypothesis that chironomids respond rapidly to climatic variation via adaptive mechanisms and to a lesser extent via phenotypic plasticity. The result of the experiment indicates that three generations were sufficient to adapt to warm temperature, decreasing the mortality rate, highlighting the potential for chironomids to rapidly respond to seasonally changing conditions.
Collapse
Affiliation(s)
- Quentin Foucault
- Molecular Ecology GroupSenckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute for Organismic and Molecular EvolutionJohannes Gutenberg UniversitätMainzGermany
| | - Andreas Wieser
- Molecular Ecology GroupSenckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute for Organismic and Molecular EvolutionJohannes Gutenberg UniversitätMainzGermany
| | - Ann‐Marie Waldvogel
- Molecular Ecology GroupSenckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Barbara Feldmeyer
- Molecular Ecology GroupSenckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Markus Pfenninger
- Molecular Ecology GroupSenckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute for Organismic and Molecular EvolutionJohannes Gutenberg UniversitätMainzGermany
| |
Collapse
|
12
|
Waldvogel AM, Wieser A, Schell T, Patel S, Schmidt H, Hankeln T, Feldmeyer B, Pfenninger M. The genomic footprint of climate adaptation in Chironomus riparius. Mol Ecol 2018; 27:1439-1456. [PMID: 29473242 DOI: 10.1111/mec.14543] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
Abstract
The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data and population genetic modelling. Common-garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.
Collapse
Affiliation(s)
- Ann-Marie Waldvogel
- Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hesse, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Andreas Wieser
- Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hesse, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Tilman Schell
- Molecular Ecology Group, Institute for Ecology, Evolution & Diversity, Goethe-University, Frankfurt am Main, Hesse, Germany.,Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Simit Patel
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Hanno Schmidt
- Pathology, Microbiology & Immunology, University of California - Davis, Davis, CA, USA
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg-University, Mainz, Rhineland-Palatinate, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
13
|
Pedrosa JAM, Cocchiararo B, Verdelhos T, Soares AMVM, Pestana JLT, Nowak C. Population genetic structure and hybridization patterns in the cryptic sister species Chironomus riparius and Chironomus piger across differentially polluted freshwater systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:280-289. [PMID: 28359994 DOI: 10.1016/j.ecoenv.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Chironomids are an integral and functionally important part of many freshwater ecosystems. Yet, to date, there is limited understanding of their microevolutionary processes under chemically polluted natural environments. In this study, we investigated the genetic variation within populations of the ecotoxicological model species Chironomus riparius and its cryptic sister species Chironomus piger at 18 metal-contaminated and reference sites in northwestern Portugal. Microsatellite analysis was conducted on 909 samples to answer if metal contamination affects genetic variation in natural chironomid populations as previously suggested from controlled laboratory experiments. Similarly high levels of genetic diversity and significant but weak genetic substructuring were found across all sites and temporal replicates, with no effects of metal contamination on the genetic variation or species' abundance, although C. piger tended to be less frequent at highly contaminated sites. Our results indicate that high levels of gene flow and population dynamic processes may overlay potential pollutant effects. At least for our study species, we conclude that the "genetic erosion hypothesis", which suggests that chemical pollution will reduce genome-wide genetic variability in affected populations, does not hold under natural conditions. Interestingly, our study provides evidence of successful hybridization between the two sister species under natural conditions.
Collapse
Affiliation(s)
- João A M Pedrosa
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Tiago Verdelhos
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| |
Collapse
|
14
|
Pedrosa JAM, Cocchiararo B, Bordalo MD, Rodrigues ACM, Soares AMVM, Barata C, Nowak C, Pestana JLT. The role of genetic diversity and past-history selection pressures in the susceptibility of Chironomus riparius populations to environmental stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:807-816. [PMID: 27810765 DOI: 10.1016/j.scitotenv.2016.10.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
Natural populations experiencing intense selection and genetic drift may exhibit limited potential to adapt to environmental change. The present study addresses the following aspects of the "genetic erosion" hypothesis in the midge Chironomus riparius: does long-term mercury (Hg) contamination affect the Hg tolerance of midge populations inhabiting such impacted areas? If so, is there any fitness cost under changing environmental conditions? And does genetic impoverishment influence the susceptibility of C. riparius to cope with environmental stressful conditions? For this end, we tested the acute and chronic tolerance to Hg and salinity in four C. riparius populations differing in their levels of genetic diversity (assessed through microsatellite markers) and past-histories of Hg exposure. Results showed that the midge population collected from a heavily Hg-contaminated site had higher Hg tolerance compared to the population collected from a closely-located reference site suggesting directional selection for Hg-tolerant traits in its native environment despite no genetic erosion in the field. No increased susceptibility under changing environmental conditions of salinity stress was observed. Moreover, results also showed that populations with higher genetic diversity performed better in the partial life-cycle assays providing evidence on the key role that genetic diversity plays as mediator of populations' susceptibility to environmental stress. Our findings are discussed in terms of the suitability of C. riparius as a model organism in evolutionary toxicology studies as well as the validity of ecotoxicological assessments using genetically eroded laboratory populations.
Collapse
Affiliation(s)
- João A M Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Berardino Cocchiararo
- Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Maria D Bordalo
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Oppold AM, Pedrosa JAM, Bálint M, Diogo JB, Ilkova J, Pestana JLT, Pfenninger M. Support for the evolutionary speed hypothesis from intraspecific population genetic data in the non-biting midge Chironomus riparius. Proc Biol Sci 2016; 283:20152413. [PMID: 26888029 DOI: 10.1098/rspb.2015.2413] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolutionary speed hypothesis (ESH) proposes a causal mechanism for the latitudinal diversity gradient. The central idea of the ESH is that warmer temperatures lead to shorter generation times and increased mutation rates. On an absolute time scale, both should lead to an acceleration of selection and drift. Based on the ESH, we developed predictions regarding the distribution of intraspecific genetic diversity: populations of ectothermic species with more generations per year owing to warmer ambient temperatures should be more differentiated from each other, accumulate more mutations and show evidence for increased mutation rates compared with populations in colder regions. We used the multivoltine insect species Chironomus riparius to test these predictions with cytochrome oxidase I (COI) sequence data and found that populations from warmer regions are indeed significantly more differentiated and have significantly more derived haplotypes than populations from colder regions. We also found a significant correlation of the annual mean temperature with the population mutation parameter θ that serves as a proxy for the per generation mutation rate under certain assumptions. This pattern could be corroborated with two nuclear loci. Overall, our results support the ESH and indicate that the thermal regime experienced may be crucially driving the evolution of ectotherms and may thus ultimately govern their speciation rate.
Collapse
Affiliation(s)
- Ann-Marie Oppold
- Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University Frankfurt am Main, Hessen, Germany Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hessen, Germany
| | - João A M Pedrosa
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal Conservation Genetics Group, Senckenberg Research Institute, Gelnhausen, Hessen, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hessen, Germany
| | - João B Diogo
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hessen, Germany
| | - Julia Ilkova
- Institute of Biodiversity and Ecosystem research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - João L T Pestana
- Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Markus Pfenninger
- Molecular Ecology Group, Institute for Ecology, Evolution and Diversity, Goethe-University Frankfurt am Main, Hessen, Germany Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
16
|
Stoks R, Geerts AN, De Meester L. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evol Appl 2013; 7:42-55. [PMID: 24454547 PMCID: PMC3894897 DOI: 10.1111/eva.12108] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/30/2013] [Indexed: 12/14/2022] Open
Abstract
We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.
Collapse
Affiliation(s)
- Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| | - Aurora N Geerts
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven Leuven, Belgium
| |
Collapse
|