1
|
Rashidi S, Yousefi AR, Mastinu A. Mycorrhizal Symbiosis Can Change the Composition of Secondary Metabolites in Fruits of Solanum nigrum L. Chem Biodivers 2024; 21:e202400208. [PMID: 38713365 DOI: 10.1002/cbdv.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.
Collapse
Affiliation(s)
- Sakineh Rashidi
- Department of Plant Production & Genetics, University of Zanjan, Zanjan, Iran
| | - Ali Reza Yousefi
- Department of Plant Production & Genetics, University of Zanjan, Zanjan, Iran
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
2
|
Fell A, Silva T, Duthie AB, Dent D. A global systematic review of frugivorous animal tracking studies and the estimation of seed dispersal distances. Ecol Evol 2023; 13:e10638. [PMID: 37915807 PMCID: PMC10616751 DOI: 10.1002/ece3.10638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
Seed dispersal is one of the most important ecosystem functions globally. It shapes plant populations, enhances forest succession, and has multiple, indirect benefits for humans, yet it is one of the most threatened processes in plant regeneration, worldwide. Seed dispersal distances are determined by the diets, seed retention times and movements of frugivorous animals. Hence, understanding how we can most effectively describe frugivore movement and behaviour with rapidly developing animal tracking technology is key to quantifying seed dispersal. To assess the current use of animal tracking in frugivory studies and to provide a baseline for future studies, we provide a comprehensive review and synthesis on the existing primary literature of global tracking studies that monitor movement of frugivorous animals. Specifically, we identify studies that estimate dispersal distances and how they vary with body mass and environmental traits. We show that over the last two decades there has been a large increase in frugivore tracking studies that determine seed dispersal distances. However, some taxa (e.g. reptiles) and geographic locations (e.g. Africa and Central Asia) are poorly studied. Furthermore, we found that certain morphological and environmental traits can be used to predict seed dispersal distances. We demonstrate that flight ability and increased body mass both significantly increase estimated seed dispersal mean and maximum distances. Our results also suggest that protected areas have a positive effect on mean seed dispersal distances when compared to unprotected areas. We anticipate that this review will act as a reference for future frugivore tracking studies, specifically to target current taxonomic and geographic data gaps, and to further explore how seed dispersal relates to key frugivore and fruit traits.
Collapse
Affiliation(s)
- Adam Fell
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Thiago Silva
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - A. Bradley Duthie
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Daisy Dent
- Department of Environmental Systems ScienceInstitute of Integrative Biology, ETH ZurichZurichSwitzerland
- Max Planck Institute for Animal BehaviourKonstanzGermany
- Smithsonian Tropical Research InstituteBalboaPanama
| |
Collapse
|
3
|
Affiliation(s)
- Juan Manuel Morales
- Grupo de Ecología Cuantitativa, INIBIOMA‐CONICET, Univ. Nacional del Comahue Bariloche Argentina
| | - Teresa Morán López
- Grupo de Ecología Cuantitativa, INIBIOMA‐CONICET, Univ. Nacional del Comahue Bariloche Argentina
| |
Collapse
|
4
|
Mahandran V, Murugan CM, Anisha PS, Wang G, Chen J, Nathan PT. Chemical components change along the ontogeny of a bat fruit (Neolamarckia cadamba) with ripening asynchrony in favour of its fruit selection and seed dispersal. Naturwissenschaften 2021; 108:46. [PMID: 34581964 DOI: 10.1007/s00114-021-01756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
An asynchronous fruit-ripening strategy can enhance the chance of seed dispersal by providing ripe fruits for an extended period to foragers. However, mechanisms associated with this strategy that can facilitate seed dispersal are understudied. This study aimed to investigate whether the chemical components (minerals and secondary metabolites) of a bat fruit with ripening asynchrony change along its ontogeny (Rubiaceae: Neolamarckia cadamba). We predicted that the seed-to-pulp ratio would increase along with fruit ripeness. The chemical components of the fruit were also predicted to change along their ontogenesis in favour of fruit selection and seed dispersal by fruit bats. Our study shows that the asynchronous fruiting strategy limited the number of ripe fruits daily so that fruits were available at a steady rate. As predicted, the seed-to-pulp ratio of each fruit increased along with fruit development. A fruit's mineral concentration also increased as fruit developed, with a sharp jump at full ripeness, when fruit colour also changed. In contrast, the concentration of secondary metabolite compositions decreased gradually during the process of ontogeny. Fruit bats (Pteropodidae: Pteropus giganteus and Cynopterus sphinx) were the only nocturnal frugivore visitors of these trees and their fruit selection was driven by fruit size and colour. Both bats preferably consumed ripe fruits, which had a higher concentration of attractants (essential minerals) and a lower concentration of deterrents (secondary metabolites), supplemented with a higher seed-to-pulp ratio. The bats exhibited different foraging patterns and home ranges resulting in dispersal (as measured by feeding roost location) occurring across different spatial scales. Our study shows that the chemical components involved in an asynchronous fruit-ripening process could select for extended fruit availability by intensifying the demand for each ripe fruit among legitimate seed dispersers, which increases the likelihood of fruits being dispersed away from parent crowns.
Collapse
Affiliation(s)
- Valliyappan Mahandran
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | | | | | - Gang Wang
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jin Chen
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | | |
Collapse
|
5
|
Fruit secondary metabolites shape seed dispersal effectiveness. Trends Ecol Evol 2021; 36:1113-1123. [PMID: 34509316 DOI: 10.1016/j.tree.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Plant secondary metabolites (PSMs) play a central role in seed dispersal and fruit defense, with potential for large impacts on plant fitness and demography. Yet because PSMs can have multiple interactive functions across seed dispersal stages, we must systematically study their effects to determine the net consequences for plant fitness. To tackle this issue, we integrate the role of fruit PSMs into the seed dispersal effectiveness (SDE) framework. We describe PSM effects on the quantity and quality of animal-mediated seed dispersal, both in pairwise interactions and diverse disperser communities, as well as trade-offs that occur across dispersal stages. By doing so, this review provides structure to a rapidly growing field and yields insights into a critical process shaping plant populations.
Collapse
|
6
|
Hemingway CT, Aversa III JC, Ryan MJ, Page RA. Context-dependent preferences in wild fruit bats. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Whitehead SR, Schneider GF, Dybzinski R, Nelson AS, Gelambi M, Jos E, Beckman NG. Fruits, frugivores, and the evolution of phytochemical diversity. OIKOS 2021. [DOI: 10.1111/oik.08332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Susan R. Whitehead
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | | | - Ray Dybzinski
- School of Environmental Sustainability, Loyola Univ. Chicago IL USA
| | - Annika S. Nelson
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Mariana Gelambi
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Elsa Jos
- Dept of Biology and Ecology Center, Utah State Univ. Logan UT USA
| | | |
Collapse
|
8
|
Schnabel A, Athmer B, Manke K, Schumacher F, Cotinguiba F, Vogt T. Identification and characterization of piperine synthase from black pepper, Piper nigrum L. Commun Biol 2021; 4:445. [PMID: 33833371 PMCID: PMC8032705 DOI: 10.1038/s42003-021-01967-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/03/2021] [Indexed: 01/19/2023] Open
Abstract
Black pepper (Piper nigrum L.) is the world's most popular spice and is also used as an ingredient in traditional medicine. Its pungent perception is due to the interaction of its major compound, piperine (1-piperoyl-piperidine) with the human TRPV-1 or vanilloid receptor. We now identify the hitherto concealed enzymatic formation of piperine from piperoyl coenzyme A and piperidine based on a differential RNA-Seq approach from developing black pepper fruits. This enzyme is described as piperine synthase (piperoyl-CoA:piperidine piperoyl transferase) and is a member of the BAHD-type of acyltransferases encoded by a gene that is preferentially expressed in immature fruits. A second BAHD-type enzyme, also highly expressed in immature black pepper fruits, has a rather promiscuous substrate specificity, combining diverse CoA-esters with aliphatic and aromatic amines with similar efficiencies, and was termed piperamide synthase. Recombinant piperine and piperamide synthases are members of a small gene family in black pepper. They can be used to facilitate the microbial production of a broad range of medicinally relevant aliphatic and aromatic piperamides based on a wide array of CoA-donors and amine-derived acceptors, offering widespread applications.
Collapse
Affiliation(s)
- Arianne Schnabel
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany
| | - Benedikt Athmer
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany
| | - Kerstin Manke
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany
| | | | - Fernando Cotinguiba
- Instituto de Pesquisas de Produtos Naturais (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brasil
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Halle (Saale), Germany.
| |
Collapse
|
9
|
Maynard LD, Slinn HL, Glassmire AE, Matarrita-Carranza B, Dodson CD, Nguyen TT, Burroughs MJ, Dyer LA, Jeffrey CS, Whitehead SR. Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal. Ecology 2020; 101:e03192. [PMID: 32892339 DOI: 10.1002/ecy.3192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 11/07/2022]
Abstract
Deciphering the ecological roles of plant secondary metabolites requires integrative studies that assess both the allocation patterns of compounds and their bioactivity in ecological interactions. Secondary metabolites have been primarily studied in leaves, but many are unique to fruits and can have numerous potential roles in interactions with both mutualists (seed dispersers) and antagonists (pathogens and predators). We described 10 alkenylphenol compounds from the plant species Piper sancti-felicis (Piperaceae), quantified their patterns of intraplant allocation across tissues and fruit development, and examined their ecological role in fruit interactions. We found that unripe and ripe fruit pulp had the highest concentrations and diversity of alkenylphenols, followed by flowers; leaves and seeds had only a few compounds at detectable concentrations. We observed a nonlinear pattern of alkenylphenol allocation across fruit development, increasing as flowers developed into unripe pulp then decreasing as pulp ripened. This pattern is consistent with the hypothesis that alkenylphenols function to defend fruits from pre-dispersal antagonists and are allocated based on the contribution of the tissue to the plant's fitness, but could also be explained by non-adaptive constraints. To assess the impacts of alkenylphenols in interactions with antagonists and mutualists, we performed fungal bioassays, field observations, and vertebrate feeding experiments. In fungal bioassays, we found that alkenylphenols had a negative effect on the growth of most fungal taxa. In field observations, nocturnal dispersers (bats) removed the majority of infructescences, and diurnal dispersers (birds) removed a larger proportion of unripe infructescences. In feeding experiments, bats exhibited an aversion to alkenylphenols, but birds did not. This observed behavior in bats, combined with our results showing a decrease in alkenylphenols during ripening, suggests that alkenylphenols in fruits represent a trade-off (defending against pathogens but reducing disperser preference). These results provide insight into the ecological significance of a little studied class of secondary metabolites in seed dispersal and fruit defense. More generally, documenting intraplant spatiotemporal allocation patterns in angiosperms and examining mechanisms behind these patterns with ecological experiments is likely to further our understanding of the evolutionary ecology of plant chemical traits.
Collapse
Affiliation(s)
- Lauren D Maynard
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Heather L Slinn
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Craig D Dodson
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | | | - Megan J Burroughs
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, Reno, Nevada, 89557, USA
| | - Christopher S Jeffrey
- Department of Chemistry, Hitchcock Center for Chemical Ecology, University of Nevada, Reno, Nevada, 89557, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
10
|
Baldwin JW, Dechmann DKN, Thies W, Whitehead SR. Defensive fruit metabolites obstruct seed dispersal by altering bat behavior and physiology at multiple temporal scales. Ecology 2020; 101:e02937. [PMID: 31750543 DOI: 10.1002/ecy.2937] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/04/2019] [Accepted: 10/18/2019] [Indexed: 01/02/2023]
Abstract
The paradoxical presence of toxic chemical compounds in ripe fruits represents a balance between plant enemies and allies: chemical traits can defend seeds against antagonistic herbivores, seed predators, or fungal pathogens, but also can impose costs by repelling mutualistic seed dispersers, although the costs are often difficult to quantify. Seeds gain fitness benefits from traveling far from the parent plant, as they can escape from parental competition and elude specialized herbivores as well as pathogens that accumulate on adult plants. However, seeds are difficult to follow from their parent plant to their final destination. Thus, little is known about the factors that determine seed dispersal distance. We investigated this potential cost of fruit secondary compounds, reduced seed dispersal distance, by combining two data sets from previous work on a Neotropical bat-plant dispersal system (bats in the genus Carollia and plants in the genus Piper). We used data from captive behavioral experiments, which show how amides in ripe fruits of Piper decrease the retention time of seeds and alter food choices. With new analyses, we show that these defensive secondary compounds also delay the time of fruit removal. Next, with a behaviorally annotated bat telemetry data set, we quantified post-feeding movements (i.e., seed dispersal distances). Using generalized additive mixed models we found that seed dispersal distances varied nonlinearly with gut retention times as well as with the time of fruit removal. By interrogating the model predictions, we identified two novel mechanisms by which fruit secondary compounds can impose costs in terms of decreased seed dispersal distances: (1) small-scale reductions in gut retention time and (2) causing fruits to forgo advantageous bat activity peaks that confer high seed dispersal distances.
Collapse
Affiliation(s)
- Justin W Baldwin
- Department of Public Health, School of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, USA.,Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Dina K N Dechmann
- Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany.,Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Smithsonian Tropical Research Institute, Balboa, Panamá
| | - Wibke Thies
- Gesellschaft für Internationale Zusammenarbeit (GIZ GmbH), Eschborn, 65760, Germany
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, MC 0390, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
11
|
Moreno SA, Gelambi M, Biganzoli A, Molinari J. Small nutrient molecules in fruit fuel efficient digestion and mutualism with plants in frugivorous bats. Sci Rep 2019; 9:19376. [PMID: 31852966 PMCID: PMC6920426 DOI: 10.1038/s41598-019-55915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/04/2019] [Indexed: 11/28/2022] Open
Abstract
Frugivorous bats often possess short intestines, and digest rapidly. These characters are thought to be weight-saving adaptations for flight. The hypothesis that they limit digestive efficiency was tested by assaying glucose and protein in fecal samples of a free-ranging bat, and in fruit of its main food plant. To assure the correct calculation of digestive efficiencies, seeds were used as a mass marker for nutrients in fruit and feces. Glucose represents 32.86%, and protein 0.65%, of the nutrient content of fruit. Digestive efficiencies for these nutrients respectively are 92.46% and 84.44%, clearly negating the hypothesis for glucose. Few studies have quantified protein in fruit. Instead, "crude protein", a dietary parameter solely based on nitrogen determinations, is used as a surrogate of protein content. This study shows that, for fruit consumed by bats, crude protein estimates typically are much greater than true protein values, implying that a large fraction of the crude protein reported in previous studies consists of free amino acids. The rapid digestion of frugivores has the potential to limit protein digestion, thus it may require free amino acids for efficient assimilation of nitrogen; therefore, the crude protein approach is inadequate for the fruit that they consume because it does not differentiate free amino acids from protein. Adding simple sugars and free amino acids, instead of protein, to fruit reduce metabolic costs for plants. Direct assimilation of these small nutrient molecules increases digestive and foraging efficiencies. Both factors contribute to the persistence of the mutualism between plants and frugivores, with community-wide repercussions.
Collapse
Affiliation(s)
- S Andrea Moreno
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela
| | - Mariana Gelambi
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela
| | - Alejandro Biganzoli
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela
| | - Jesús Molinari
- Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 05101, Venezuela.
| |
Collapse
|
12
|
Schupp EW, Zwolak R, Jones LR, Snell RS, Beckman NG, Aslan C, Cavazos BR, Effiom E, Fricke EC, Montaño-Centellas F, Poulsen J, Razafindratsima OH, Sandor ME, Shea K. Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive. AOB PLANTS 2019; 11:plz067. [PMID: 31857875 PMCID: PMC6914678 DOI: 10.1093/aobpla/plz067] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing 'drivers of intraspecific variation in seed dispersal' into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal.
Collapse
Affiliation(s)
- Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Rafal Zwolak
- Department of Systematic Zoology, Adam Mickiewicz University, Poznań, Poland
| | - Landon R Jones
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Rebecca S Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Brittany R Cavazos
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Edu Effiom
- REDD & Biodiversity Unit, Cross River State Forestry Commission, Calabar, Nigeria
| | - Evan C Fricke
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA
| | | | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Onja H Razafindratsima
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| | - Manette E Sandor
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
13
|
Carpenter JK, O'Donnell CFJ, Moltchanova E, Kelly D. Long seed dispersal distances by an inquisitive flightless rail ( Gallirallus australis) are reduced by interaction with humans. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190397. [PMID: 31598239 PMCID: PMC6731707 DOI: 10.1098/rsos.190397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Human presence is becoming increasingly ubiquitous, but the influence this has on the seed dispersal services performed by frugivorous animals is largely unknown. The New Zealand weka (Gallirallus australis) is an inquisitive flightless rail that frequently congregates in areas of high human use. Weka are important seed dispersers, yet the seed dispersal services they provide are still poorly understood. We estimated seed dispersal distances of weka for two plant species (Prumnopitys ferruginea and Elaeocarpus dentatus) and tested how human interaction affected these dispersal distances. We estimated weka seed dispersal distances by combining GPS data from 39 weka over three sites with weka seed retention time data in a mechanistic model. The mean seed retention times were extremely long (38-125 h). Weka were highly effective dispersers, dispersing 93-96% of seeds away from parent canopies, and 1% of seeds over 1 km. However, we found evidence of a significant human impact on the seed dispersal distances of weka, with birds occupying areas of high human use performing 34.8-40.9% shorter distances than their more remote counterparts. This represents an example of cryptic function loss, where although weka are still present in the ecosystem, their seed dispersal services are impaired by human interaction.
Collapse
Affiliation(s)
- Joanna K. Carpenter
- Manaaki Whenua-Landcare Research, Private Bag 1930, Dunedin, New Zealand
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | | - Elena Moltchanova
- Department of Math and Statistics, University of Canterbury, Christchurch 4800, New Zealand
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
14
|
Naves ER, de Ávila Silva L, Sulpice R, Araújo WL, Nunes-Nesi A, Peres LEP, Zsögön A. Capsaicinoids: Pungency beyond Capsicum. TRENDS IN PLANT SCIENCE 2019; 24:109-120. [PMID: 30630668 DOI: 10.1016/j.tplants.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 05/08/2023]
Abstract
Capsaicinoids are metabolites responsible for the appealing pungency of Capsicum (chili pepper) species. The completion of the Capsicum annuum genome has sparked new interest into the development of biotechnological applications involving the manipulation of pungency levels. Pungent dishes are already part of the traditional cuisine in many countries, and numerous health benefits and industrial applications are associated to capsaicinoids. This raises the question of how to successfully produce more capsaicinoids, whose biosynthesis is strongly influenced by genotype-environment interactions in fruits of Capsicum. In this Opinion article we propose that activating the capsaicinoid biosynthetic pathway in a more amenable species such as tomato could be the next step in the fascinating story of pungent crops.
Collapse
Affiliation(s)
- Emmanuel Rezende Naves
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucas de Ávila Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre (PABC) and Ryan Institute, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
15
|
Yoshikawa T, Kawakami K, Masaki T. Allometric scaling of seed retention time in seed dispersers and its application to estimation of seed dispersal potentials of theropod dinosaurs. OIKOS 2019. [DOI: 10.1111/oik.05827] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tetsuro Yoshikawa
- Forestry and Forest Products Research Inst. – 1 Matsunosato Tsukuba Ibaraki 305‐8687 Japan
- Natl Inst. for Environmental Studies – Center for Environmental Biology and Ecosystem Studies, 16‐2 Onogawa Tsukuba Ibaragi 305‐8506 Japan
| | - Kazuto Kawakami
- Forestry and Forest Products Research Inst. – 1 Matsunosato Tsukuba Ibaraki 305‐8687 Japan
| | - Takashi Masaki
- Forestry and Forest Products Research Inst. – 1 Matsunosato Tsukuba Ibaraki 305‐8687 Japan
| |
Collapse
|
16
|
Zwolak R. How intraspecific variation in seed-dispersing animals matters for plants. Biol Rev Camb Philos Soc 2017; 93:897-913. [DOI: 10.1111/brv.12377] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology, Faculty of Biology; Adam Mickiewicz University, Umultowska 89; 61-614 Poznań Poland
| |
Collapse
|
17
|
Oleksy R, Giuggioli L, McKetterick TJ, Racey PA, Jones G. Flying foxes create extensive seed shadows and enhance germination success of pioneer plant species in deforested Madagascan landscapes. PLoS One 2017; 12:e0184023. [PMID: 28877248 PMCID: PMC5587229 DOI: 10.1371/journal.pone.0184023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/16/2017] [Indexed: 12/02/2022] Open
Abstract
Seed dispersal plays a significant role in forest regeneration and maintenance. Flying foxes are often posited as effective long-distance seed dispersers due to their large home ranges and ability to disperse seeds when flying. We evaluate the importance of the Madagascan flying fox Pteropus rufus in the maintenance and regeneration of forests in one of the world’s priority conservation areas. We tested germination success of over 20,000 seeds from the figs Ficus polita, F. grevei and F. lutea extracted from bat faeces and ripe fruits under progressively more natural conditions, ranging from petri-dishes to outdoor environments. Seeds from all fig species showed increased germination success after passing through the bats’ digestive tracts. Outside, germination success in F. polita was highest in faecal seeds grown under semi-shaded conditions, and seeds that passed through bats showed increased seedling establishment success. We used data from feeding trials and GPS tracking to construct seed shadow maps to visualize seed dispersal patterns. The models use Gaussian probability density functions to predict the likelihood of defecation events occurring after feeding. In captivity, bats had short gut retention times (often < 30 mins), but were sometimes able to retain seeds for over 24h. In the wild, bats travelled 3–5 km within 24–280 min after feeding, when defecation of ingested seeds is very likely. They produced extensive seed shadows (11 bats potentially dispersing seeds over 58,000 ha over 45 total days of tracking) when feeding on figs within their large foraging areas and dispersed the seeds in habitats that were often partially shaded and hence would facilitate germination up to 20 km from the feeding tree. Because figs are important pioneer species, P. rufus is an important dispersal vector that makes a vital contribution to the regeneration and maintenance of highly fragmented forest patches in Madagascar.
Collapse
Affiliation(s)
- Ryszard Oleksy
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Luca Giuggioli
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Thomas J. McKetterick
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Paul A. Racey
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall campus, Penryn, Cornwall, United Kingdom
| | - Gareth Jones
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Abedi-Lartey M, Dechmann DK, Wikelski M, Scharf AK, Fahr J. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape. Glob Ecol Conserv 2016. [DOI: 10.1016/j.gecco.2016.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Seed dispersal distances by ant partners reflect preferential recruitment patterns in two ant-dispersed sedges. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Whitehead SR, Quesada MFO, Bowers MD. Chemical tradeoffs in seed dispersal: defensive metabolites in fruits deter consumption by mutualist bats. OIKOS 2015. [DOI: 10.1111/oik.02210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susan R. Whitehead
- Ecology and Evolutionary Biology, Univ. of Colorado UCB 334, Boulder CO 80309 USA
| | | | - M. Deane Bowers
- Ecology and Evolutionary Biology, Univ. of Colorado UCB 334, Boulder CO 80309 USA
- Museum of Natural History, Univ. of Colorado UCB 218, Boulder CO 80309 USA
| |
Collapse
|
22
|
Baldwin JW, Whitehead SR. Fruit secondary compounds mediate the retention time of seeds in the guts of Neotropical fruit bats. Oecologia 2014; 177:453-66. [PMID: 25262120 DOI: 10.1007/s00442-014-3096-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/16/2014] [Indexed: 11/26/2022]
Abstract
Plants often recruit frugivorous animals to transport their seeds; however, gut passage can have varying effects on plant fitness depending on the physical and chemical treatment of the seed, the distance seeds are transported, and the specific site of deposition. One way in which plants can mediate the effects of gut passage on fitness is by producing fruit secondary compounds that influence gut-retention time (GRT). Using frugivorous bats (Carollia perspicillata: Phyllostomidae) and Neotropical plants in the genus Piper, we compared GRT of seeds among five plant species (Piper colonense, Piper peltatum, Piper reticulatum, Piper sancti-felicis, and Piper silvivagum) and investigated the role of fruit amides (piperine, piplartine and whole fruit amide extracts from P. reticulatum) in mediating GRT. Our results showed interspecific differences in GRT; P. reticulatum seeds passed most slowly, while P. silvivagum and P. colonense seeds passed most rapidly. Piplartine and P. reticulatum amide extracts decreased GRT, while piperine had no effect. In addition, we examined the effects of GRT on seed germination success and speed in laboratory conditions. For germination success, the effects were species specific; germination success increased with GRT for P. peltatum but not for other species. GRT did not influence germination speed in any of the species examined. Plant secondary compounds have primarily been studied in the context of their defensive role against herbivores and pathogens, but may also play a key role in mediating seed dispersal interactions.
Collapse
|