1
|
Liu Q, Deng Z, Chen H, Kim MS, Kim DH, Gu L, Lee JS, Yang Z. Changes in Induced-Antipredation Defense Traits and Transcriptome Regulations of Daphnia magna in Response to 5-HT 1A Receptor Antagonist. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7577-7587. [PMID: 38630542 DOI: 10.1021/acs.est.3c10720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The serotonin signaling system plays a crucial role in regulating the ontogeny of crustaceans. Here, we describe the effects of different concentrations of the 5-hydroxytryptamine 1A receptor antagonist (WAY-100635) on the induced antipredation (Rhodeus ocellatus as the predator), morphological, behavioral, and life-history defenses of Daphnia magna and use transcriptomics to analyze the underlying molecular mechanisms. Our results indicate that exposure to WAY-100635 leads to changes in the expression of different defensive traits in D. magna when faced with fish predation risks. Specifically, as the length of exposure to WAY-100635 increases, high concentrations of WAY-100635 inhibit defensive responses associated with morphological and reproductive activities but promote the immediate negative phototactic behavioral defense of D. magna. This change is related to the underlying mechanism through which WAY-100635 interferes with gene expression of G-protein-coupled GABA receptors by affecting GABBR1 but promotes serotonin receptor signaling and ecdysteroid signaling pathways. In addition, we also find for the first time that fish kairomone can significantly activate the HIF-1α signaling pathway, which may lead to an increase in the rate of immediate movement. These results can help assess the potential impacts of serotonin-disrupting psychotropic drugs on zooplankton in aquatic ecosystems.
Collapse
Affiliation(s)
- Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ziyi Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Huafang Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Eachus H, Oberski L, Paveley J, Bacila I, Ashton JP, Esposito U, Seifuddin F, Pirooznia M, Elhaik E, Placzek M, Krone NP, Cunliffe VT. Glucocorticoid receptor regulates protein chaperone, circadian clock and affective disorder genes in the zebrafish brain. Dis Model Mech 2023; 16:dmm050141. [PMID: 37525888 PMCID: PMC10565112 DOI: 10.1242/dmm.050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.
Collapse
Affiliation(s)
- Helen Eachus
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Lara Oberski
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jack Paveley
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irina Bacila
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - John-Paul Ashton
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Umberto Esposito
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Eran Elhaik
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nils P. Krone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vincent T. Cunliffe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity. Sci Rep 2022; 12:11883. [PMID: 35831328 PMCID: PMC9279360 DOI: 10.1038/s41598-022-15583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
Phenotypic plasticity is widely regarded as important for enabling species resilience to environmental change and for species evolution. However, insight into the complex mechanisms by which phenotypic plasticity evolves in nature is limited by our ability to reconstruct evolutionary histories of plasticity. By using part of the molecular mechanism, we were able to trace the evolution of pre-feeding phenotypic plasticity across the class Echinoidea and identify the origin of plasticity at the base of the regular urchins. The neurosensory foundation for plasticity was ancestral within the echinoids. However, coincident development of the plastic trait and the neurosensory system was not achieved until the regular urchins, likely due to pleiotropic effects and linkages between the two colocalized systems. Plasticity continues to evolve within the urchins with numerous instances of losses associated with loss of sensory abilities and neurons, consistent with a cost of maintaining these capabilities. Thus, evidence was found for the neurosensory system providing opportunities and constraints to the evolution of phenotypic plasticity.
Collapse
|
4
|
Fraker ME, Ludsin SA, Luttbeg B, Denver RJ. Stress hormone-mediated antipredator morphology improves escape performance in amphibian tadpoles. Sci Rep 2021; 11:4427. [PMID: 33627747 PMCID: PMC7904905 DOI: 10.1038/s41598-021-84052-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Complete functional descriptions of the induction sequences of phenotypically plastic traits (perception to physiological regulation to response to outcome) should help us to clarify how plastic responses develop and operate. Ranid tadpoles express several plastic antipredator traits mediated by the stress hormone corticosterone, but how they influence outcomes remains uncertain. We investigated how predator-induced changes in the tail morphology of wood frog (Rana sylvatica) tadpoles influenced their escape performance over a sequence of time points when attacked by larval dragonflies (Anax junius). Tadpoles were raised with no predator exposure, chemical cues of dragonflies added once per day, or constant exposure to caged dragonflies crossed with no exogenous hormone added (vehicle control only), exogenous corticosterone, or metyrapone (a corticosteroid synthesis inhibitor). During predation trials, we detected no differences after four days, but after eight days, tadpoles exposed to larval dragonflies and exogenous corticosterone had developed deeper tail muscles and exhibited improved escape performance compared to controls. Treatment with metyrapone blocked the development of a deeper tail muscle and resulted in no difference in escape success. Our findings further link the predator-induced physiological stress response of ranid tadpoles to the development of an antipredator tail morphology that confers performance benefits.
Collapse
Affiliation(s)
- Michael E. Fraker
- grid.261331.40000 0001 2285 7943Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212 USA ,grid.214458.e0000000086837370Present Address: Cooperative Institute for Great Lakes Research, School for the Environment and Sustainability, The University of Michigan, Ann Arbor, MI 48109 USA
| | - Stuart A. Ludsin
- grid.261331.40000 0001 2285 7943Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43212 USA
| | - Barney Luttbeg
- grid.65519.3e0000 0001 0721 7331Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Robert J. Denver
- grid.214458.e0000000086837370Department of Molecular, Cellular, and Developmental Biology and Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Zhu S, Wu G, Gu L, Sun Y, Zhang L, Huang Y, Lyu K, Yang Z. Antidepressant sertraline impairs the induced morphological defense of Ceriodaphnia cornuta in response to Chaoborus larvae kairomone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115092. [PMID: 32650302 DOI: 10.1016/j.envpol.2020.115092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Antidepressants discharged into natural waters are likely to become a new type of endocrine pollutant, which may impact the interspecific relationship in aquatic ecosystem. Induced defense of cladocerans plays an important role in maintaining the balance of interspecific relationships between cladocerans and higher trophic levels. Here we studied the effects of antidepressant sertraline, a selective serotonin reuptake inhibitor, on the induced defensive traits of Ceriodaphnia cornuta in response to invertebrate predator Chaoborus larvae kairomone, including morphological defense and life history traits. We also conducted the predation experiments to check the selection rate of Chaoborus larvae during directly ingesting C. cornuta that were exposed to Chaoborus larvae kairomone at high concentration of sertraline. Results showed sertraline had an interference effect on the induced morphological defense of C. cornuta in response to Chaoborus larvae kairomone, i.e. the high concentration of sertraline (20 and 100 μg L-1) significantly reduced the horns induction. However, the different concentrations of sertraline generally did not affect the life history traits of C. cornuta, regardless of presence or absence of Chaoborus larvae kairomone. The predation experiment demonstrated that the inhibition of sertraline on the induced morphological defense of C. cornuta can promote the feeding selective efficiency of Chaoborus larvae, and thus cause C. cornuta easily to be predated by Chaoborus larvae. Our results suggested that sertraline at the concentrations that are not direct harmful to life history traits of C. cornuta can seriously affect the predator-prey relationship, indicating that effects of pollutants on interspecific relationships should be considered comprehensively to avoid underestimating the potential risk of pollutants to ecosystems.
Collapse
Affiliation(s)
- Shuangshuang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Guangjin Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
6
|
Nagano M, Doi H. Ecological and evolutionary factors of intraspecific variation in inducible defenses: Insights gained from Daphnia experiments. Ecol Evol 2020; 10:8554-8562. [PMID: 32884639 PMCID: PMC7452781 DOI: 10.1002/ece3.6599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022] Open
Abstract
Phenotypic variation among individuals and species is a fundamental principle of natural selection. In this review, we focus on numerous experiments involving the model species Daphnia (Crustacea) and categorize the factors, especially secondary ones, affecting intraspecific variations in inducible defense. Primary factors, such as predator type and density, determine the degree to which inducible defense expresses and increases or decreases. Secondary factors, on the other hand, act together with primary factors to inducible defense or without primary factors on inducible defense. The secondary factors increase intraspecies variation in inducible defense, and thus, the level of adaptation of organisms varies within species. Future research will explore the potential for new secondary factors, as well as the relative importance between factors needs to be clarified.
Collapse
Affiliation(s)
- Mariko Nagano
- Graduate School of Simulation StudiesUniversity of HyogoKobeJapan
| | - Hideyuki Doi
- Graduate School of Simulation StudiesUniversity of HyogoKobeJapan
| |
Collapse
|
7
|
Daphnia magna responses to fish kairomone and chlorpromazine exposures. Chem Biol Interact 2020; 325:109123. [DOI: 10.1016/j.cbi.2020.109123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023]
|
8
|
Sperfeld E, Nilssen JP, Rinehart S, Schwenk K, Hessen DO. Ecology of predator-induced morphological defense traits in Daphnia longispina (Cladocera, Arthropoda). Oecologia 2020; 192:687-698. [PMID: 31950263 PMCID: PMC7058565 DOI: 10.1007/s00442-019-04588-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/26/2019] [Indexed: 11/27/2022]
Abstract
Inducible defenses against predators are widespread among plants and animals. For example, some Daphnia species form neckteeth against predatory larvae of the dipteran genus Chaoborus. Though thoroughly studied in D. pulex, knowledge about neckteeth in other Daphnia species is limited. The occurrence of this trait in the D. longispina species complex is only sporadically reported and the specific shape of neckteeth or the occurrence of other morphological defense traits is scarcely known in this widespread group. Here, we explored neckteeth occurrence in a large number of D. longispina populations across Scandinavia and studied neckteeth formation and other morphological defense traits on three D. longispina clones in the laboratory. In the study region, neckteeth on juvenile D. longispina s. str. were observed frequently in permanent ponds, but only when Chaoborus spp. larvae were present. In the laboratory experiments, all three D. longispina clones developed neckteeth (very similar to D. pulex) in response to Chaoborus kairomone exposure. The D. longispina clones also developed a longer tail spine, wider body, and larger neckteeth pedestal in response to predation threat—likely as a defense against the gape-limited predator. The intensity of neckteeth expression also depended on the clone studied and the concentration of Chaoborus kairomone. Our results demonstrate that neckteeth on D. longispina can be common in nature and that D. longispina can also induce other morphological defenses against predators. The similarity of neckteeth in D. longispina and D. pulex imposes yet unresolved questions on the evolutionary origin in these distantly related Daphnia groups.
Collapse
Affiliation(s)
- Erik Sperfeld
- Animal Ecology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany. .,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, Oslo, Norway.
| | - Jens Petter Nilssen
- Müller-Sars Society for Free Basic Research, P.O. Box 5831, 0308, Oslo, Norway
| | - Shelby Rinehart
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Blindern, Oslo, Norway.,Department of Ecology, Evolution, and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klaus Schwenk
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Dag Olav Hessen
- Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
9
|
Comparative Transcriptome Analysis for Understanding Predator-Induced Polyphenism in the Water Flea Daphnia pulex. Int J Mol Sci 2018; 19:ijms19072110. [PMID: 30036973 PMCID: PMC6073494 DOI: 10.3390/ijms19072110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
The crustacean Daphnia pulex is one of the best model organisms for studying inducible defense mechanisms due to their inducible morphology in response to the predator Chaoborus larvae. In this study, multiple developmental stages of D. pulex were exposed to C. flavicans larvae and transcriptome profiles of samples from late embryo to fifth instar were sequenced by the RNA-seq technique to investigate the genetic background underlying inducible defenses. In comparison, differentially expressed genes between defensive and normal morphs were identified, including 908 genes in late embryo, 1383 genes in the first-third (1–3) instar, and 1042 genes in fourth-fifth (4–5) instar. Gene ontology enrichment analysis showed that structural constituents of the cuticle and structural molecule activity genes were prominent up-regulated genes in late embryos. Down-regulated genes in late embryos and 1–3 instar comprised metabolic process, hydrolase activity, and peptidase activity gene classes. Pathway analysis indicated that small molecule neurotransmitter pathways were potentially involved in the development of inducible defenses. The characterization of genes and pathways in multiple developmental stages can improve our understanding of inducible defense responses of D. pulex to predation at the molecular level.
Collapse
|
10
|
Siljestam M, Östman Ö. The combined effects of temporal autocorrelation and the costs of plasticity on the evolution of plasticity. J Evol Biol 2017; 30:1361-1371. [PMID: 28485061 DOI: 10.1111/jeb.13114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Adaptive phenotypic plasticity is an important source of intraspecific variation, and for many plastic traits, the costs or factors limiting plasticity seem cryptic. However, there are several different factors that may constrain the evolution of plasticity, but few models have considered costs and limiting factors simultaneously. Here we use a simulation model to investigate how the optimal level of plasticity in a population depends on a fixed maintenance fitness cost for plasticity or an incremental fitness cost for producing a plastic response in combination with environmental unpredictability (environmental fluctuation speed) limiting plasticity. Our model identifies two mechanisms that act, almost separately, to constrain the evolution of plasticity: (i) the fitness cost of plasticity scaled by the nonplastic environmental tolerance, and (ii) the environmental fluctuation speed scaled by the rate of phenotypic change. That is, the evolution of plasticity is constrained by the high cost of plasticity in combination with high tolerance for environmental variation, or fast environmental changes in combination with slow plastic response. Qualitatively similar results are found when maintenance and incremental fitness costs of plasticity are incorporated, although a larger degree of plasticity is selected for with an incremental cost. Our model highlights that it is important to consider direct fitness costs and phenotypic limitations in relation to nonplastic environmental tolerance and environmental fluctuations, respectively, to understand what constrains the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- M Siljestam
- Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden
| | - Ö Östman
- Department of Ecology & Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Mitchell MD, Bairos-Novak KR, Ferrari MCO. Mechanisms underlying the control of responses to predator odours in aquatic prey. J Exp Biol 2017; 220:1937-1946. [DOI: 10.1242/jeb.135137] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
In aquatic systems, chemical cues are a major source of information through which animals are able to assess the current state of their environment to gain information about local predation risk. Prey use chemicals released by predators (including cues from a predator's diet) and other prey (such as alarm cues and disturbance cues) to mediate a range of behavioural, morphological and life-history antipredator defences. Despite the wealth of knowledge on the ecology of antipredator defences, we know surprisingly little about the physiological mechanisms that control the expression of these defensive traits. Here, we summarise the current literature on the mechanisms known to specifically mediate responses to predator odours, including dietary cues. Interestingly, these studies suggest that independent pathways may control predator-specific responses, highlighting the need for greater focus on predator-derived cues when looking at the mechanistic control of responses. Thus, we urge researchers to tease apart the effects of predator-specific cues (i.e. chemicals representing a predator's identity) from those of diet-mediated cues (i.e. chemicals released from a predator's diet), which are known to mediate different ecological endpoints. Finally, we suggest some key areas of research that would greatly benefit from a more mechanistic approach.
Collapse
Affiliation(s)
- Matthew D. Mitchell
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| | | | - Maud C. O. Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B4
| |
Collapse
|
12
|
Weiss LC, Leese F, Laforsch C, Tollrian R. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia. Proc Biol Sci 2016; 282:20151440. [PMID: 26423840 DOI: 10.1098/rspb.2015.1440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity.
Collapse
Affiliation(s)
- Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B18 2TT, UK
| | - Florian Leese
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany Aquatic Ecosystem Research Group, University of Duisburg and Essen, Universitätsstrasse 5, Essen 45141, Germany
| | - Christian Laforsch
- Aquatic Ecosystem Research Group, University of Duisburg and Essen, Universitätsstrasse 5, Essen 45141, Germany Department of Animal Ecology I, University Bayreuth, Universitätsstrasse 30, Bayreuth 95447, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
13
|
Abstract
Ecological developmental biology is the study of the interactions between developing organisms and their environments. Organisms have evolved to use the environment as a source of important cues that can alter the trajectory of their development. First, developmental plasticity enables the genome to generate a repertoire of possible phenotypes, and environmental cues are often used to select the phenotype that appears most adaptive at that time. This facilitates evolutionary strategies such as phenotypic accommodation, genetic assimilation, and niche construction. Second, developmental symbiosis, wherein the developing animal utilizes cues from other organisms for normal cell differentiation and morphogenesis, has been found to be ubiquitous. The coevolution of symbiotic microbes and animal cells has often led to the dependency of an animal's development on particular microbial signals, making these cues essential and expected components of normal development.
Collapse
|
14
|
Christjani M, Fink P, von Elert E. Phenotypic plasticity in three Daphnia genotypes in response to predator kairomone: evidence for an involvement of chitin deacetylases. J Exp Biol 2016; 219:1697-704. [DOI: 10.1242/jeb.133504] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023]
Abstract
The genetic background of inducible morphological defences in Daphnia is still largely unknown. Dissolved infochemicals from the aquatic larvae of the phantom midge Chaoborus induce so called ‘neck-teeth’ in the first three postembryonic stages of Daphnia pulex. This defence has become a textbook example for inducible defences. In a target gene approach, by applying a gradient of three Daphnia genotypes which differed significantly in neck-teeth induction in response to equal amounts of kairomone, we report a high correlation of neck-teeth induction in D. pulex and relative gene expression of two chitin deacetylases. Further, previous studies suggested genes from both the juvenoid and the insulin hormone signalling pathways as well as several morphogenetic genes downstream to be responsible for the neck-teeth induction in D. pulex. However, these data on previously suggested genes reported were not supported by this study. None of the three D. pulex clones did show an upregulation of these previously proposed candidate genes tested in this study as a response to predator kairomone, which is interpreted as the result of refined methods used for both RNA sampling and kairomone enrichment, which yielded unambiguous results compared to earlier studies. The assessment of a clonal gradient of Daphnia in the presence and absence of infochemicals provides a promising approach to identify further genes being involved in the induction of morphological defences by correlating gene expression and morphology.
Collapse
Affiliation(s)
- Mark Christjani
- Aquatic Chemical Ecology, University of Cologne, Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Patrick Fink
- Aquatic Chemical Ecology, University of Cologne, Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Eric von Elert
- Aquatic Chemical Ecology, University of Cologne, Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| |
Collapse
|
15
|
Otte KA, Schrank I, Fröhlich T, Arnold GJ, Laforsch C. Interclonal proteomic responses to predator exposure inDaphnia magnamay depend on predator composition of habitats. Mol Ecol 2015; 24:3901-17. [DOI: 10.1111/mec.13287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/09/2015] [Accepted: 06/17/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Kathrin A. Otte
- Laboratory for Functional Genome Analysis (LAFUGA); Gene Center; Ludwig-Maximilians-University Munich; Feodor-Lynen-Strasse 25 81377 Munich Germany
- Department Biology II; Ludwig Maximilians University Munich; Grosshaderner Street 2 82152 Planegg-Martinsried Germany
- Animal Ecology I and BayCEER; University of Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Isabella Schrank
- Animal Ecology I and BayCEER; University of Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA); Gene Center; Ludwig-Maximilians-University Munich; Feodor-Lynen-Strasse 25 81377 Munich Germany
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis (LAFUGA); Gene Center; Ludwig-Maximilians-University Munich; Feodor-Lynen-Strasse 25 81377 Munich Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER; University of Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
16
|
Dall SRX, McNamara JM, Leimar O. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol Evol 2015; 30:327-33. [PMID: 25944666 DOI: 10.1016/j.tree.2015.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
The development of multicellular organisms involves a delicate interplay between genetic and environmental influences. It is often useful to think of developmental systems as integrating available sources of information about current conditions to produce organisms. Genes and inherited physiology provide cues, as does the state of the environment during development. The integration systems themselves are under genetic control and subject to Darwinian selection, so we expect them to evolve to produce organisms that fit well with current ecological (including social) conditions. We argue for the scientific value of this explicitly informational perspective by providing detailed examples of how it can elucidate taxonomically diverse phenomena. We also present a general framework for linking genetic and phenotypic variation from an informational perspective. This application of Darwinian logic at the organismal level can elucidate genetic influences on phenotypic variation in novel and counterintuitive ways.
Collapse
Affiliation(s)
- Sasha R X Dall
- Centre for Ecology and Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Tremough, Penryn TR10 9EZ, UK.
| | - John M McNamara
- Centre for Ecology and Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Tremough, Penryn TR10 9EZ, UK; School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Gazzola A, Brandalise F, Rubolini D, Rossi P, Galeotti P. Fear is the mother of invention: anuran embryos exposed to predator cues alter life-history traits, post-hatching behaviour, and neuronal activity patterns. J Exp Biol 2015; 218:3919-30. [DOI: 10.1242/jeb.126334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/16/2015] [Indexed: 01/24/2023]
Abstract
Neurophysiological modifications associated to phenotypic plasticity in response to predators are largely unexplored, and there is a gap of knowledge on how the information encoded in predator cues is processed by prey sensory systems. To explore these issues, we exposed Rana dalmatina embryos to dragonfly chemical cues (kairomones) up to hatching. At different times after hatching (up to 40 days), we recorded morphology and antipredator behaviour of control and embryonic-treated tadpoles as well as their neural olfactory responses, by recording the activity of their mitral neurons before and after exposure to a kairomone solution. Embryonic-treated embryos hatched later and originated smaller hatchlings than control siblings. In addition, embryonic-treated tadpoles showed a stronger antipredator response than controls at 10 (but not at 30) days post-hatching, though the intensity of the contextual response to the kairomone stimulus did not differ between the two groups. Baseline neuronal activity at 30 days post-hatching, as assessed by the frequency of spontaneous excitatory postsynaptic events and by the firing rate of mitral cells, was higher among embryonic-treated tadpoles compared to controls. At the same time, neuronal activity showed a stronger increase among embryonic-treated tadpoles than among controls after a local kairomone perfusion. Hence, a different contextual plasticity between treatments at the neuronal level was not mirrored by the antipredator behavioural response. In conclusion, our experiments demonstrate ontogenetic plasticity in tadpole neuronal activity after embryonic exposure to predator cues, corroborating the evidence that early-life experience can contribute to shaping the phenotype at later life stages.
Collapse
Affiliation(s)
- Andrea Gazzola
- Dipartimento di Scienze della Terra e dell'Ambiente, Laboratorio di Eco-Etologia, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Federico Brandalise
- Dipartimento di Biologia e Biotecnologie, Laboratorio di Fisiologia, Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Brain Research Institute, University of Zurich, Wintethurerstrasse 190, 8057 Zurich, CH, Switzerland
| | - Diego Rubolini
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Paola Rossi
- Dipartimento di Biologia e Biotecnologie, Laboratorio di Fisiologia, Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Paolo Galeotti
- Dipartimento di Scienze della Terra e dell'Ambiente, Laboratorio di Eco-Etologia, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
18
|
Sheriff MJ, Thaler JS. Ecophysiological effects of predation risk; an integration across disciplines. Oecologia 2014; 176:607-11. [DOI: 10.1007/s00442-014-3105-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/16/2023]
|