1
|
Kawakami E, Ataka M, Kume T, Shimono K, Harada M, Hishi T, Katayama A. Root exudation in a sloping Moso bamboo forest in relation to fine root biomass and traits. PLoS One 2022; 17:e0266131. [PMID: 35324979 PMCID: PMC8947071 DOI: 10.1371/journal.pone.0266131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Exudation by fine roots generally varies with their morphological traits, but the effect of belowground resource availability on the root exudation via root morphological traits and biomass remains unknown. We aimed to determine the effects of morphological and physiological traits on root exudation rates and to estimate stand-scale exudation (Estand) by measuring the mass, length, and surface area of fine roots in a Moso bamboo forest. We measured root exudation as well as morphological and physiological traits in upper and lower plots on a slope with different belowground resource availability. The mean (± S.D.) root exudation rates per mass in the upper and lower slope were 0.049 ± 0.047 and 0.040 ± 0.059 mg C g-1 h-1, respectively, which were in the range of exudation found in woody forest ecosystems. We observed significant relationships between root exudation per mass and root respiration, as well as specific root length and surface area. In contrast, exudation per length and area did not correlate with morphological traits. The morphological traits did not differ between slope positions, resulting in no significant difference in root exudation per mass. Fine root biomass, length, and surface area on a unit ground basis were much higher in the lower than those in the upper slope positions. Estand was higher when estimated by mass than by length and area because the morphological effect on exudation was ignored when scaled using mass. Estand was 1.4–2.0-fold higher in the lower than that in upper slope positions, suggesting that the scaling parameters of mass, length, and area determined the Estand estimate more than the exudation rate per mass, length, and area. Regardless of scaling, Estand was much higher in the Moso bamboo forest than in other forest ecosystems because of a large fine-root biomass.
Collapse
Affiliation(s)
- Erika Kawakami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishiku, Fukuoka, Japan
| | - Mioko Ataka
- Research Institute for Sustainable Humanosphere, Uji, Kyoto, Japan
| | - Tomonori Kume
- Shiiba Research Forest, Kyushu University, Shiiba, Miyazaki, Japan
| | - Kohei Shimono
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishiku, Fukuoka, Japan
| | - Masayoshi Harada
- Faculty of Agriculture, Kyushu University, Nishiku, Fukuoka, Japan
| | - Takuo Hishi
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka, Japan
| | - Ayumi Katayama
- Shiiba Research Forest, Kyushu University, Shiiba, Miyazaki, Japan
- * E-mail:
| |
Collapse
|
2
|
Noguchi K, Matsuura Y, Morishita T, Toriyama J, Kim Y. Fine Root Growth of Black Spruce Trees and Understory Plants in a Permafrost Forest Along a North-Facing Slope in Interior Alaska. FRONTIERS IN PLANT SCIENCE 2021; 12:769710. [PMID: 34868167 PMCID: PMC8635146 DOI: 10.3389/fpls.2021.769710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Permafrost forests play an important role in the global carbon budget due to the huge amounts of carbon stored below ground in these ecosystems. Although fine roots are considered to be a major pathway of belowground carbon flux, separate contributions of overstory trees and understory shrubs to fine root dynamics in these forests have not been specifically characterized in relation to permafrost conditions, such as active layer thickness. In this study, we investigated fine root growth and morphology of trees and understory shrubs using ingrowth cores with two types of moss substrates (feather- and Sphagnum mosses) in permafrost black spruce (Picea mariana) stands along a north-facing slope in Interior Alaska, where active layer thickness varied substantially. Aboveground biomass, litterfall production rate, and fine root mass were also examined. Results showed that aboveground biomass, fine root mass, and fine root growth of black spruce trees tended to decrease downslope, whereas those of understory Ericaceae shrubs increased. Belowground allocation (e.g., ratio of fine root growth/leaf litter production) increased downslope in both of black spruce and understory plants. These results suggested that, at a lower slope, belowground resource availability was lower than at upper slope, but higher light availability under open canopy seemed to benefit the growth of the understory shrubs. On the other hand, understory shrubs were more responsive to the moss substrates than black spruce, in which Sphagnum moss substrates increased fine root growth of the shrubs as compared with feather moss substrates, whereas the effect was unclear for black spruce. This is probably due to higher moisture contents in Sphagnum moss substrates, which benefited the growth of small diameter (high specific root length) fine roots of understory shrubs. Hence, the contribution of understory shrubs to fine root growth was greater at lower slope than at upper slope, or in Sphagnum than in feather-moss substrates in our study site. Taken together, our data show that fine roots of Ericaceae shrubs are a key component in belowground carbon flux at permafrost black spruce forests with shallow active layer and/or with Sphagnum dominated forest floor.
Collapse
Affiliation(s)
- Kyotaro Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI), Morioka, Japan
| | - Yojiro Matsuura
- Research Planning Department, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan
| | - Tomoaki Morishita
- Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI), Morioka, Japan
| | - Jumpei Toriyama
- Kyushu Research Center, Forestry and Forest Products Research Institute (FFPRI), Kumamoto, Japan
| | - Yongwon Kim
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
3
|
Yahara H, Tanikawa N, Okamoto M, Makita N. Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species. Oecologia 2019; 191:983-993. [DOI: 10.1007/s00442-019-04546-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 10/26/2019] [Indexed: 11/24/2022]
|
4
|
Trocha LK, Bulaj B, Kutczynska P, Mucha J, Rutkowski P, Zadworny M. The interactive impact of root branch order and soil genetic horizon on root respiration and nitrogen concentration. TREE PHYSIOLOGY 2017; 37:1055-1068. [PMID: 28903525 DOI: 10.1093/treephys/tpx096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
In general, respiration (RS) is highly correlated with nitrogen concentration (N) in plant organs, including roots, which exhibit a positive N-RS relationship. Less is known, however, about the relationship between N and RS in roots of different branch orders within an individual tree along a vertical soil profile; this is especially true in trees with contrasting life strategies, such as pioneer Scots pine (Pinus sylvestris L.) vs mid-successional sessile oak (Quercus petraea Liebl.). In the present research, the impact of root branch order, as represented by those with absorptive vs transporting ability, and soil genetic horizon on root N, RS and the N-RS relationship was examined. Mean RS and total N concentration differed significantly among root branch orders and was significantly higher in absorptive roots than in transporting roots. The soil genetic horizon differentially affected root RS in Scots pine vs sessile oak. The genetic horizon mostly affected RS in absorptive roots of Scots pine and transporting roots in sessile oak. Root N was the highest in absorptive roots and most affected by soil genetic horizon in both tree species. Root N was not correlated with soil N, although N levels were higher in roots growing in fertile soil genetic horizons. Overall, RS in different root branch orders was positively correlated with N in both species. The N-RS relationship in roots, pooled by soil genetic horizon, was significant in both species, but was only significant in sessile oak when roots were pooled by root branch order. In both tree species, a significant interaction was found between the soil genetic horizon and root branch order with root function; however, species-specific responses were found. Both root N, which was unaffected by soil N, and the positive N-RS relationship consistently observed in different genetic horizons suggest that root function prevails over environmental factors, such as soil genetic horizon.
Collapse
Affiliation(s)
- Lidia K Trocha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Bartosz Bulaj
- Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Paulina Kutczynska
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Pawel Rutkowski
- Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
5
|
Zadworny M, McCormack ML, Żytkowiak R, Karolewski P, Mucha J, Oleksyn J. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. GLOBAL CHANGE BIOLOGY 2017; 23:1218-1231. [PMID: 27670838 DOI: 10.1111/gcb.13514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 05/05/2023]
Abstract
Plant functional traits may be altered as plants adapt to various environmental constraints. Cold, low fertility growing conditions are often associated with root adjustments to increase acquisition of limiting nutrient resources, but they may also result in construction of roots with reduced uptake potential but higher tissue persistence. It is ultimately unclear whether plants produce fine roots of different structure in response to decreasing temperatures and whether these changes represent a trade-off between root function or potential root persistence. We assessed patterns of root construction based on various root morphological, biochemical and defense traits including root diameter, specific root length (SRL), root tissue density (RTD), C:N ratio, phenolic compounds, and number of phellem layers across up to 10 root orders in diverse populations of Scots pine along a 2000-km climatic gradient in Europe. Our results showed that different root traits are related to mean annual temperature (MAT) and expressed a pattern of higher root diameter and lower SRL and RTD in northern sites with lower MAT. Among absorptive roots, we observed a gradual decline in chemical defenses (phenolic compounds) with decreasing MAT. In contrast, decreasing MAT resulted in an increase of structural protection (number of phellem layers) in transport fine roots. This indicated that absorptive roots with high capacity for nutrient uptake, and transport roots with low uptake capacity, were characterized by distinct and contrasting trade-offs. Our observations suggest that diminishing structural and chemical investments into the more distal, absorptive roots in colder climates is consistent with building roots of higher absorptive capacity. At the same time, roots that play a more prominent role in transport of nutrients and water within the root system saw an increase in structural investment, which can increase persistence and reduce long-term costs associated with their frequent replacement.
Collapse
Affiliation(s)
- Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - M Luke McCormack
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Piotr Karolewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|