1
|
Meira A, Byers JE, Sousa R. A global synthesis of predation on bivalves. Biol Rev Camb Philos Soc 2024; 99:1015-1057. [PMID: 38294132 DOI: 10.1111/brv.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Predation is a dominant structuring force in ecological communities. In aquatic environments, predation on bivalves has long been an important focal interaction for ecological study because bivalves have central roles as ecosystem engineers, basal components of food webs, and commercial commodities. Studies of bivalves are common, not only because of bivalves' central roles, but also due to the relative ease of studying predatory effects on this taxonomic group. To understand patterns in the interactions of bivalves and their predators we synthesised data from 52 years of peer-reviewed studies on bivalve predation. Using a systematic search, we compiled 1334 studies from 75 countries, comprising 61 bivalve families (N = 2259), dominated by Mytilidae (29% of bivalves), Veneridae (14%), Ostreidae (8%), Unionidae (7%), and Dreissenidae and Tellinidae (6% each). A total of 2036 predators were studied, with crustaceans the most studied predator group (34% of predators), followed by fishes (24%), molluscs (17%), echinoderms (10%) and birds (6%). The majority of studies (86%) were conducted in marine systems, in part driven by the high commercial value of marine bivalves. Studies in freshwater ecosystems were dominated by non-native bivalves and non-native predator species, which probably reflects the important role of biological invasions affecting freshwater biodiversity. In fact, while 81% of the studied marine bivalve species were native, only 50% of the freshwater species were native to the system. In terms of approach, most studies used predation trials, visual analysis of digested contents and exclusion experiments to assess the effects of predation. These studies reflect that many factors influence bivalve predation depending on the species studied, including (i) species traits (e.g. behaviour, morphology, defence mechanisms), (ii) other biotic interactions (e.g. presence of competitors, parasites or diseases), and (iii) environmental context (e.g. temperature, current velocity, beach exposure, habitat complexity). There is a lack of research on the effects of bivalve predation at the population and community and ecosystem levels (only 7% and 0.5% of studies respectively examined impacts at these levels). At the population level, the available studies demonstrate that predation can decrease bivalve density through consumption or the reduction of recruitment. At the community and ecosystem level, predation can trigger effects that cascade through trophic levels or effects that alter the ecological functions bivalves perform. Given the conservation and commercial importance of many bivalve species, studies of predation should be pursued in the context of global change, particularly climate change, acidification and biological invasions.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
2
|
Yoshioka RM, Brown S, Treneman NC, Schram JB, Galloway AWE. A Rhizocephalan Parasite Induces Pervasive Effects on Its Shrimp Host. THE BIOLOGICAL BULLETIN 2023; 244:201-216. [PMID: 38457679 DOI: 10.1086/729497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractRhizocephalan barnacles are parasites of crustaceans that are known for dramatic effects on hosts, including parasitic castration, feminization, molt inhibition, and the facilitation of epibiosis. Most research on rhizocephalans has focused on carcinized hosts, with relatively little research directed to shrimp hosts that may experience distinct consequences of infection. Here, we describe a high-prevalence rhizocephalan-shrimp system in which multiple host changes are associated with infection: the dock shrimp Pandalus danae infected by the rhizocephalan Sylon hippolytes. In field-collected P. danae, infection by Sylon was associated with development of female sex characters at a smaller size and greater probability of epibiosis. Standardized video observations showed that infected P. danae performed grooming activities at higher rates than uninfected shrimp, suggesting that inhibited molting rather than direct behavioral modification is a likely mechanism for higher epibiosis rates. There was no difference in the composition of grooming behavior types or in general activity between infected and uninfected shrimp. Fatty acid compositions differed with infection, but total lipid concentrations did not, suggesting that parasite-driven shifts in host resource allocation were compensated or redirected from unmeasured tissues. Our results show that Sylon alters its host's role by provisioning an epibiotic substrate and also that it influences host physiology, resulting in feminization and fatty acid shifts. This study lays the groundwork for expanding rhizocephalan-shrimp research and encourages recognition of oft-ignored roles of parasitism in ecological communities.
Collapse
|
3
|
Resetarits EJ, Ellis WT, Byers JE. The opposing roles of lethal and nonlethal effects of parasites on host resource consumption. Ecol Evol 2023; 13:e9973. [PMID: 37066062 PMCID: PMC10099202 DOI: 10.1002/ece3.9973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 04/18/2023] Open
Abstract
Although parasites can kill their hosts, they also commonly cause nonlethal effects on their hosts, such as altered behaviors or feeding rates. Both the lethal and nonlethal effects of parasites can influence host resource consumption. However, few studies have explicitly examined the joint lethal and nonlethal effects of parasites to understand the net impacts of parasitism on host resource consumption. To do this, we adapted equations used in the indirect effects literature to quantify how parasites jointly influence basal resource consumption through nonlethal effects (altered host feeding rate) and lethal effects (increased host mortality). To parametrize these equations and to examine the potential temperature sensitivity of parasite influences, we conducted a fully factorial lab experiment (crossing trematode infection status and a range of temperatures) to quantify feeding rates and survivorship curves of snail hosts. We found that infected snails had significantly higher mortality and ate nearly twice as much as uninfected snails and had significantly higher mortality, resulting in negative lethal effects and positive nonlethal effects of trematodes on host resource consumption. The net effects of parasites on resource consumption were overall positive in this system, but did vary with temperature and experimental duration, highlighting the context dependency of outcomes for the host and ecosystem. Our work demonstrates the importance of jointly investigating lethal and nonlethal effects of parasites and provides a novel framework for doing so.
Collapse
Affiliation(s)
- Emlyn J. Resetarits
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgia30602USA
- Marine InstituteUniversity of GeorgiaDarienGeorgia31305USA
| | - William T. Ellis
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
| | - James E. Byers
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia30602USA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgia30602USA
| |
Collapse
|
4
|
Season and prey identity mediate the effect of predators on parasites in rodents: a test of the healthy herds hypothesis. Oecologia 2023; 201:107-118. [PMID: 36414861 DOI: 10.1007/s00442-022-05284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/06/2022] [Indexed: 11/24/2022]
Abstract
The healthy herds hypothesis (HHH) suggests that predators decrease parasitism in their prey. Repeated tests of this hypothesis across a range of taxa and ecosystems have revealed significant variation in the effect of predators on parasites in prey. Differences in the response to predators (1) between prey taxa, (2) between seasons, and (3) before and after catastrophic disturbance are common in natural systems, but typically ignored in empirical tests of the HHH. We used a predator exclusion experiment to measure the effect of these heterogeneities on the tri-trophic interaction among predators, parasites and prey. We experimentally excluded mammalian predators from the habitats of hispid cotton rats (Sigmodon hispidus) and cotton mice (Peromyscus gossypinus) and measured the effect of exclusion on gastrointestinal parasites in these rodents. Our experiment spanned multiple seasons and before and after a prescribed burn. We found that the exclusion of the same predators had opposite effects on the parasites of small mammal prey species. Additionally, we found that the effect of mammal exclusion on parasitism differed before versus after fire disturbance. Finally, we saw that the effect of predator exclusion was highly dependent on prey capture season. Significant effects of exclusion emerged primarily in the fall and winter months. The presence of so many different effects in one relatively simple system suggests that predator effects on parasites in prey are highly context dependent.
Collapse
|
5
|
Walsman JC, Cressler CE. Predation shifts coevolution toward higher host contact rate and parasite virulence. Proc Biol Sci 2022; 289:20212800. [PMID: 35858064 PMCID: PMC9277270 DOI: 10.1098/rspb.2021.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy-Gyrodactylus spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
Collapse
Affiliation(s)
- Jason C. Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
6
|
Friant S, Young DK, Goldberg TL. Typical intracranial myiasis in Nigerian red river hogs ( Potamochoerus porcus) caused by an unknown bot fly (Diptera: Oestridae). Int J Parasitol Parasites Wildl 2022; 17:14-19. [PMID: 34934619 PMCID: PMC8660700 DOI: 10.1016/j.ijppaw.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
We report an unknown taxon of bot fly (Diptera: Oestridae: Oestrinae) in red river hogs (Potamochoerus porcus Linnaeus, 1758) in Cross River State, Nigeria. From direct observation and interviews with local hunters, we document that, remarkably, the parasite typically occurs within the intracranial supra-meningeal space - i.e., between the inner wall of the skull and the brain - but without causing visible inflammation or clinical signs. The parasite is most similar (up to 87.9%) to Rhinoestrus usbekistanicus based on cytochrome oxidase subunit 1 DNA sequencing but is sufficiently divergent phylogenetically to represent a new or previously un-sequenced taxon. Morphologically, the parasite shares some, but not all, features with R. nivarleti. Local cultural belief systems attribute aspects of red river hog behavior (e.g. intelligence, elusiveness) to the parasite, suggesting a prolonged presence in the red river hog population. The parasite's unusual anatomic location may be aberrant, or it may be a protective adaptation to life in red river hogs, which forage vigorously with their snouts.
Collapse
Affiliation(s)
- Sagan Friant
- Department of Anthropology, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel K. Young
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Bojko J, McCoy KA, M H Blakeslee A. 'Candidatus Mellornella promiscua' n. gen. n. sp. (Alphaproteobacteria: Rickettsiales: Anaplasmataceae): an intracytoplasmic, hepatopancreatic, pathogen of the flatback mud crab, Eurypanopeus depressus. J Invertebr Pathol 2022; 190:107737. [PMID: 35247466 DOI: 10.1016/j.jip.2022.107737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/27/2022] [Indexed: 01/02/2023]
Abstract
Bacterial pathogens are a long-standing threat to the longevity and survival of crustacean hosts. Their presence and continuing emergence require close monitoring to understand their impact on fished, cultured, and wild crustacean populations. We describe a new bacterial pathogen belonging to the Anaplasmataceae family (Alphaproteobacteria: Rickettsiales), providing pathological, ultrastructural, phylogenetic, and genomic evidence to determine a candidate genus and species ('Candidatus Mellornella promiscua'). This bacterium was found to infect the mud crab, Eurypanopeus depressus, on the North Carolina coastline (USA) at a prevalence of 10.8%. 'Candidatus Mellornella promiscua' was often observed in co-infection with the rhizocephalan barnacle, Loxothylacus panopaei. The bacterium was only found in the hepatopancreas of the mud crab host, causing cytoplasmic hypertrophy, tubule necrosis, large plaques within the cytoplasm of the host cell, and an abundance of sex-pili. The circular genome of the bacterium is 1,013,119bp and encodes 939 genes in total. Phylogenetically, the new bacterium branches within the Anaplasmataceae. The genome is dissimilar from other described bacteria, with 16S gene similarity observed at a maximum of 85.3% to a Wolbachia endosymbiont. We explore this novel bacterial pathogen using genomic, phylogenetic, ultrastructural, and pathological methods, discussing these results in light of current bacterial taxonomy, similarity to other bacterial pathogens, and the potential impact upon the surrounding disease ecology of the host and benthic ecosystem.
Collapse
Affiliation(s)
- Jamie Bojko
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK.
| | - Krista A McCoy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | | |
Collapse
|
8
|
Gehman AM, Mahaffey M, Byers JE. Influences of land use and ecological variables on trematode prevalence and intensity at the salt marsh‐upland ecotone. Ecosphere 2021. [DOI: 10.1002/ecs2.3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alyssa‐Lois M. Gehman
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602 USA
- Zoology University of British Columbia 2212 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- Hakai Institute End of Kwakshua Channel Calvert Island British Columbia Canada
| | - Morgan Mahaffey
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602 USA
| | - James E. Byers
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602 USA
| |
Collapse
|
9
|
Blakeslee AMH, Pochtar DL, Fowler AE, Moore CS, Lee TS, Barnard RB, Swanson KM, Lukas LC, Ruocchio M, Torchin ME, Miller AW, Ruiz GM, Tepolt CK. Invasion of the body snatchers: the role of parasite introduction in host distribution and response to salinity in invaded estuaries. Proc Biol Sci 2021; 288:20210703. [PMID: 34157870 DOI: 10.1098/rspb.2021.0703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In dynamic systems, organisms are faced with variable selective forces that may impose trade-offs. In estuaries, salinity is a strong driver of organismal diversity, while parasites shape species distributions and demography. We tested for trade-offs between low-salinity stress and parasitism in an invasive castrating parasite and its mud crab host along salinity gradients of two North Carolina rivers. We performed field surveys every six to eight weeks over 3 years to determine factors influencing parasite prevalence, host abundance, and associated taxa diversity. We also looked for signatures of low-salinity stress in the host by examining its response (time-to-right and gene expression) to salinity. We found salinity and temperature significantly affected parasite prevalence, with low-salinity sites (less than 10 practical salinity units (PSU)) lacking infection, and populations in moderate salinities at warmer temperatures reaching prevalence as high as 60%. Host abundance was negatively associated with parasite prevalence. Host gene expression was plastic to acclimation salinity, but several osmoregulatory and immune-related genes demonstrated source-dependent salinity response. We identified a genetic marker that was strongly associated with salinity against a backdrop of no neutral genetic structure, suggesting possible selection on standing variation. Our study illuminates how selective trade-offs in naturally dynamic systems may shape host evolutionary ecology.
Collapse
Affiliation(s)
| | - Darby L Pochtar
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Chris S Moore
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Timothy S Lee
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Rebecca B Barnard
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Kyle M Swanson
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Laura C Lukas
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Matthew Ruocchio
- Biology Department, East Carolina University, Greenville, NC 27858, USA
| | - Mark E Torchin
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - A Whitman Miller
- Invasion Ecology Lab, Smithsonian Environmental Research Lab, Edgewater, MD, USA
| | - Gregory M Ruiz
- Invasion Ecology Lab, Smithsonian Environmental Research Lab, Edgewater, MD, USA
| | - Carolyn K Tepolt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
10
|
Spatial Dynamics of Two Host-Parasite Relationships on Intertidal Oyster Reefs. DIVERSITY 2021. [DOI: 10.3390/d13060260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intertidal reefs comprised of the eastern oyster (Crassostrea virginica) have long experienced habitat loss, altering habitat patch characteristics of size and distance from edge to interior, potentially influencing spatial dynamics of host-parasite relationships. Using two parasitic relationships, one between eastern oyster host and parasitic oyster pea crab (Zaops ostreum) and the other between a xanthid crab (Eurypanopeus depressus) and a parasitic rhizocephalan barnacle (Loxothylacus panopaei), we examined how host-parasite population characteristics varied on intertidal reefs by season, reef size, and distance from edge to interior. Pea crab prevalence was more related to habitat characteristics rather than host density, as pea crab prevalence was the highest on large reefs and along edges, areas of comparatively lower oyster densities. Reef size did not influence densities of parasitized or non-parasitized xanthid crabs, but densities varied from edge to interior. Non-parasitized xanthids had significantly lower densities along the reef edge compared to more interior reef locations, while parasitized xanthid crabs had no significant edge to interior pattern. Organismal size had a varied relationship based upon habitat characteristics, as pea crab carapace width (CW) varied interactively with season and reef size, whereas CW of parasitized/non-parasitized xanthid crabs varied significantly between edge and interior locations. These results demonstrated that influential habitat characteristics, such as patch size and edge versus interior, are both highly species and host-parasite specific. Therefore, continued habitat alteration and fragmentation of critical marine habitats may further impact spatial dynamics of host-parasite relationships.
Collapse
|
11
|
Abstract
Climate change affects ecological processes and interactions, including parasitism. Because parasites are natural components of ecological systems, as well as agents of outbreak and disease-induced mortality, it is important to summarize current knowledge of the sensitivity of parasites to climate and identify how to better predict their responses to it. This need is particularly great in marine systems, where the responses of parasites to climate variables are less well studied than those in other biomes. As examples of climate's influence on parasitism increase, they enable generalizations of expected responses as well as insight into useful study approaches, such as thermal performance curves that compare the vital rates of hosts and parasites when exposed to several temperatures across a gradient. For parasites not killed by rising temperatures, some simple physiological rules, including the tendency of temperature to increase the metabolism of ectotherms and increase oxygen stress on hosts, suggest that parasites' intensity and pathologies might increase. In addition to temperature, climate-induced changes in dissolved oxygen, ocean acidity, salinity, and host and parasite distributions also affect parasitism and disease, but these factors are much less studied. Finally, because parasites are constituents of ecological communities, we must consider indirect and secondary effects stemming from climate-induced changes in host-parasite interactions, which may not be evident if these interactions are studied in isolation.
Collapse
Affiliation(s)
- James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA;
| |
Collapse
|
12
|
Tepolt CK, Darling JA, Blakeslee AMH, Fowler AE, Torchin ME, Miller AW, Ruiz GM. Recent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic. Evol Appl 2020; 13:545-558. [PMID: 32431735 PMCID: PMC7045710 DOI: 10.1111/eva.12865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white-fingered mud crab (Rhithropanopeus harrisii) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid-Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short-term interaction) than in its native range (long-term interaction), a result that was also supported by a meta-analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host-parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host-parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.
Collapse
Affiliation(s)
- Carolyn K. Tepolt
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMAUSA
- Smithsonian Environmental Research CenterEdgewaterMDUSA
| | - John A. Darling
- National Exposure Research LaboratoryUS Environmental Protection AgencyResearch Triangle ParkNCUSA
| | | | - Amy E. Fowler
- Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxVAUSA
| | - Mark E. Torchin
- Smithsonian Tropical Research InstituteBalboaAnconRepublic of Panama
| | | | | |
Collapse
|
13
|
Buck JC. Indirect Effects Explain the Role of Parasites in Ecosystems. Trends Parasitol 2019; 35:835-847. [DOI: 10.1016/j.pt.2019.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022]
|
14
|
Synergistic effects of predation and parasites on the overwinter survival of root voles. Oecologia 2019; 191:83-96. [PMID: 31332519 DOI: 10.1007/s00442-019-04455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Predators and parasites have been important extrinsic factors influencing the fluctuation of small mammal populations. They can have non-additive effects on a shared group of preys or hosts, which can have important consequences for population dynamics. However, experimental studies incorporating the interactions between predation and parasites are scarce in small mammal populations. Here we systematically examined the synergistic effects of predators and coccidian parasites interaction on overwinter survival and likely mechanisms underlying the synergistic effects in the root vole (Microtus oeconomus). Our aim was to test the general hypothesis that predators and coccidia interact synergistically to decrease overwinter survival of root voles through mediating vole's physiological traits and body conditions. We carried out a factorial experimental design, by which we manipulated the predator exclusion in combination with the parasitic removal in enclosures, and then measured fecal corticosterone metabolite (FCM) levels, immunocompetence, and body conditions in captured animals via repeated live trapping. We found a strong negative synergistic effect of predators and coccidia on survival. Importantly, we found that predators increased both the prevalence and intensity of coccidian infection in voles through immune suppression induced by predation stress, while increased coccidian infection reduced plasma protein and hematocrit level of voles, which may impair anti-predator ability of voles and lead to an increase in predation. Our finding showed when voles are exposed to both predation risk and infection, their synergistic effects greatly reduce overwinter survival and population density. This may be an important mechanism influencing population dynamics in small mammals.
Collapse
|
15
|
Tanner E, White A, Acevedo P, Balseiro A, Marcos J, Gortázar C. Wolves contribute to disease control in a multi-host system. Sci Rep 2019; 9:7940. [PMID: 31138835 PMCID: PMC6538665 DOI: 10.1038/s41598-019-44148-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/02/2019] [Indexed: 11/08/2022] Open
Abstract
We combine model results with field data for a system of wolves (Canis lupus) that prey on wild boar (Sus scrofa), a wildlife reservoir of tuberculosis, to examine how predation may contribute to disease control in multi-host systems. Results show that predation can lead to a marked reduction in the prevalence of infection without leading to a reduction in host population density since mortality due to predation can be compensated by a reduction in disease induced mortality. A key finding therefore is that a population that harbours a virulent infection can be regulated at a similar density by disease at high prevalence or by predation at low prevalence. Predators may therefore provide a key ecosystem service which should be recognised when considering human-carnivore conflicts and the conservation and re-establishment of carnivore populations.
Collapse
Affiliation(s)
- E Tanner
- Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - A White
- Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - P Acevedo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| | - A Balseiro
- SERIDA, Gobierno del Principado de Asturias, Gijón, Spain
- Animal Health Department, University of León, León, Spain
| | - J Marcos
- Gobierno del Principado de Asturias, Oviedo, Spain
| | - C Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| |
Collapse
|
16
|
de Moraes PZ, Diniz P, Fernandez-Juricic E, Macedo RH. Flirting with danger: predation risk interacts with male condition to influence sexual display. Behav Ecol 2019. [DOI: 10.1093/beheco/arz073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AbstractSexual signaling coevolves with the sensory systems of intended receivers; however, predators may be unintended receivers of sexual signals. Conspicuous aerial displays in some species may place males at high risk of predation from eavesdropping predators. There are three different hypotheses to explain how signaling males can deal with increased predation risk: (1) males invest in survival by decreasing signal conspicuousness; (2) males invest in reproduction by increasing signal conspicuousness; and (3) male response is condition-dependent according to his residual reproductive value. Here, we used blue-black grassquits (Volatinia jacarina) to test these hypotheses, asking whether males modify leap displays under different levels of predation risk. Grassquit males develop an iridescent nuptial plumage and spend considerable time emitting a multimodal signal: while leaping from a perch, males clap their wings above their heads and emit a high-pitched short song. We exposed males to predator and nonpredator playbacks while video recording their displays. We found interactions between predation risk and 2 male condition variables (ectoparasite infestation and proportion of nuptial plumage coverage) that influenced display behavior. Less parasitized males and those with higher proportion of nuptial plumage showed no change in display behavior, while more parasitized males and those with lower proportion of nuptial plumage increased the vigor of displays under predation risk. In other words, males with low residual reproductive value increased reproductive effort when there was a high risk of extrinsic death. Our study provides some empirical support for the terminal investment hypothesis.
Collapse
Affiliation(s)
- Pedro Z de Moraes
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília, Brasília, DF, Brazil
- Laboratório de Comportamento Animal, Departamento de Zoologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Pedro Diniz
- Programa de Pós-Graduação em Ecologia, Universidade de Brasília, Brasília, DF, Brazil
- Programa de Pós-graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Vila Velha, ES, Brazil
| | | | - Regina H Macedo
- Laboratório de Comportamento Animal, Departamento de Zoologia, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
17
|
Prosnier L, Médoc V, Loeuille N. Parasitism effects on coexistence and stability within simple trophic modules. J Theor Biol 2018; 458:68-77. [DOI: 10.1016/j.jtbi.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
|
18
|
Alkhaibari AM, Maffeis T, Bull JC, Butt TM. Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? J Invertebr Pathol 2018; 153:38-50. [PMID: 29425967 PMCID: PMC5890878 DOI: 10.1016/j.jip.2018.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Mosquitoes transmit several diseases, which are of global significance (malaria, dengue, yellow fever, Zika). The geographic range of mosquitoes is increasing due to climate change, tourism and trade. Both conidial and blastospore formulations of the entomopathogenic fungus, Metarhizium brunneum ARSEF 4556, are being investigated as mosquito larvicides. However, concerns have been raised over possible non-target impacts to arthropod mosquito predators such as larvae of Toxorhynchites brevipalpis which feed on larvae of mosquito vector species. Laboratory-based, small container bioassays showed, that T. bevipalpis larvae are susceptible to relatively high concentrations (i.e. ≥107 spores ml-1) of inoculum with blastospores being significantly more virulent than conidia. At lower concentrations (e.g. <107 spores ml-1), it appears that M. brunneum complements T. brevipalpis resulting in higher control than if either agent was used alone. At a concentration of 105 spores ml-1, the LT50 of for conidia and blastospores alone was 5.64 days (95% CI: 4.79-6.49 days) and 3.89 days (95% CI: 3.53-4.25 days), respectively. In combination with T. brevipalpis, this was reduced to 3.15 days (95% CI: 2.82-3.48 days) and 2.82 days (95% CI: 2.55-3.08 days). Here, combined treatment with the fungus and predator was beneficial but weaker than additive. At 107 and 108 blastospores ml-1, mosquito larval mortality was mostly due to the fungal pathogen when the predator was combined with blastospores. However, with conidia, the effects of combined treatment were additive/synergistic at these high concentrations. Optimisation of fungal concentration and formulation will reduce: (1) risk to the predator and (2) application rates and costs of M. brunneum for control of mosquito larvae.
Collapse
Affiliation(s)
- Abeer M Alkhaibari
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom; Department of Biology, Faculty of Science, Tabuk University, Saudi Arabia
| | - Thierry Maffeis
- Centre for Nanohealth, College of Engineering, Swansea University, Swansea, United Kingdom
| | - James C Bull
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Tariq M Butt
- Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, United Kingdom.
| |
Collapse
|
19
|
Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc Natl Acad Sci U S A 2018; 115:744-749. [PMID: 29311324 DOI: 10.1073/pnas.1705067115] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.
Collapse
|
20
|
Lagrue C. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: A plea for parasite-focused studies. Int J Parasitol Parasites Wildl 2017; 6:364-374. [PMID: 30951574 PMCID: PMC5715223 DOI: 10.1016/j.ijppaw.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
While there is considerable interest in, and good evidence for, the role that parasites play in biological invasions, the potential parallel effects of species introduction on parasite dynamics have clearly received less attention. Indeed, much effort has been focused on how parasites can facilitate or limit invasions, and positively or negatively impact native host species and recipient communities. Contrastingly, the potential consequences of biological invasions for the diversity and dynamics of both native and introduced parasites have been and are still mainly overlooked, although successful invasion by non-native host species may have large, contrasting and unpredictable effects on parasites. This review looks at the links between biological invasions and pathogens, and particularly at crustacean invasions in aquatic ecosystems and their potential effects on native and invasive parasites, and discusses what often remains unknown even from well-documented systems. Aquatic crustaceans are hosts to many parasites and are often invasive. Published studies show that crustacean invasion can have highly contrasting effects on parasite dynamics, even when invasive host and parasite species are phylogenetically close to their native counterparts. These effects seem to be dependent on multiple factors such as host suitability, parasite life-cycle or host-specific resistance to parasitic manipulation. Furthermore, introduced hosts can have drastically contrasting effects on parasite standing crop and transmission, two parameters that should be independently assessed before drawing any conclusion on the potential effects of novel hosts on parasites and the key processes influencing disease dynamics following biological invasions. I conclude by calling for greater recognition of biological invasions' effects on parasite dynamics, more parasite-focused studies and suggest some potential ways to assess these effects.
Collapse
|