1
|
Reif J, Gamero A, Flousek J, Hůnová I. Ambient ozone - New threat to birds in mountain ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162711. [PMID: 36906038 DOI: 10.1016/j.scitotenv.2023.162711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Mountain ecosystems are inhabited by species with specific characteristics enabling survival at high altitudes, which make them at risk from various pressures. In order to study these pressures, birds represent excellent model organisms due to their high diversity and position at the top of food chains. The pressures upon mountain bird populations include climate change, human disturbance, land abandonment, and air pollution, whose impacts are little understood. Ambient ozone (O3) is one of the most important air pollutants occurring in elevated concentrations in mountain conditions. Although laboratory experiments and indirect course-scale evidence suggest its negative effects on birds, population-level impacts remain unknown. To fill this knowledge gap, we analysed a unique 25-years long time series of annual monitoring of bird populations conducted at fixed sites under constant effort in a Central European mountain range, the Giant Mountains, Czechia. We related annual population growth rates of 51 bird species to O3 concentrations measured during the breeding season and hypothesized (i) an overall negative relationship across all species, and (ii) more negative O3 effects at higher altitudes due to increasing O3 concentration along altitudinal gradient. After controlling for the influence of weather conditions on bird population growth rates, we found an indication of the overall negative effect of O3 concentration, but it was insignificant. However, the effect became stronger and significant when we performed a separate analysis of upland species occupying the alpine zone above treeline. In these species, populations growth rates were lower after the years experiencing higher O3 concentration indicating an adverse impact of O3 on bird breeding. This impact corresponds well to O3 behaviour and mountain bird ecology. Our study thus represents the first step towards mechanistic understanding of O3 impacts on animal populations in nature linking the experimental results with indirect indications at the country-level.
Collapse
Affiliation(s)
- Jiří Reif
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia; Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czechia.
| | - Anna Gamero
- Czech Society for Ornithology, Prague, Czechia
| | - Jiří Flousek
- Krkonoše National Park Administration, Vrchlabí, Czechia
| | - Iva Hůnová
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia; Czech Hydrometeorological Institute, Prague, Czechia
| |
Collapse
|
2
|
Tomášek O, Bobek L, Kauzálová T, Kauzál O, Adámková M, Horák K, Kumar SA, Manialeu JP, Munclinger P, Nana ED, Nguelefack TB, Sedláček O, Albrecht T. Latitudinal but not elevational variation in blood glucose level is linked to life history across passerine birds. Ecol Lett 2022; 25:2203-2216. [PMID: 36082485 DOI: 10.1111/ele.14097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Macrophysiological research is vital to our understanding of mechanisms underpinning global life history variation and adaptation to diverse environments. Here, we examined latitudinal and elevational variation in a key substrate of energy metabolism and an emerging physiological component of pace-of-life syndromes, blood glucose concentration. Our data, collected from 61 European temperate and 99 Afrotropical passerine species, revealed that baseline blood glucose increases with both latitude and elevation, whereas blood glucose stress response shows divergent directions, being stronger at low latitudes and high elevations. Low baseline glucose in tropical birds, compared to their temperate counterparts, was mainly explained by their low fecundity, consistent with the slow pace-of-life syndrome in the tropics. In contrast, elevational variation in this trait was decoupled from fecundity, implying a unique montane pace-of-life syndrome combining slow-paced life histories with fast-paced physiology. The observed patterns suggest that pace-of-life syndromes do not evolve along the single fast-slow axis.
Collapse
Affiliation(s)
- Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| | - Lukáš Bobek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Tereza Kauzálová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Ecology, Charles University, Prague, Czechia
| | - Marie Adámková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Kryštof Horák
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Sampath Anandan Kumar
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Judith Pouadjeu Manialeu
- Faculty of Science, Laboratory of Animal Physiology and Phytopharmacology, University of Dschang, Dschang, Cameroon
| | - Pavel Munclinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| | - Eric Djomo Nana
- Agricultural Research Institute for Development (IRAD), Yaoundé, Cameroon
| | - Télesphore Benoît Nguelefack
- Faculty of Science, Laboratory of Animal Physiology and Phytopharmacology, University of Dschang, Dschang, Cameroon
| | - Ondřej Sedláček
- Faculty of Science, Department of Ecology, Charles University, Prague, Czechia
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Barras AG, Blache S, Schaub M, Arlettaz R. Variation in Demography and Life-History Strategies Across the Range of a Declining Mountain Bird Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.780706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Species- and population-specific responses to their environment may depend to a large extent on the spatial variation in life-history traits and in demographic processes of local population dynamics. Yet, those parameters and their variability remain largely unknown for many cold-adapted species, which are exposed to particularly rapid rates of environmental change. Here, we compared the demographic traits and dynamics for an emblematic bird species of European mountain ecosystems, the ring ouzel (Turdus torquatus). Using integrated population models fitted in a Bayesian framework, we estimated the survival probability, productivity and immigration of two populations from the Western European Alps, in France (over 11 years) and Switzerland (over 6 years). Juvenile apparent survival was lower and immigration rate higher in the Swiss compared to the French population, with the temporal variation in population growth rate driven by different demographic processes. Yet, when compared to populations in the northwestern part of the range, in Scotland, these two Alpine populations both showed a much lower productivity and higher adult survival, indicating a slower life-history strategy. Our results suggest that demographic characteristics can substantially vary across the discontinuous range of this passerine species, essentially due to contrasted, possibly locally evolved life-history strategies. This study therefore raises the question of whether flexibility in life-history traits is widespread among boreo-alpine species and if it might provide adaptive potential for coping with current environmental change.
Collapse
|
4
|
Duncan SS, Williams JL. Life history variation in an invasive plant is associated with climate and recent colonization of a specialist herbivore. AMERICAN JOURNAL OF BOTANY 2020; 107:1366-1374. [PMID: 32914886 DOI: 10.1002/ajb2.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Spatial variation in selective pressures can lead to intraspecific variation in life history, favoring some life histories and constraining others depending on the vulnerability of life stages. We examined how spatial variation in herbivory and climate influences flowering size and the occurrence of semelparity (reproducing once) versus iteroparity (reproducing multiple times) in the introduced range of an invasive plant, houndstongue (Cynoglossum officinale). Houndstongue is a short-lived, semelparous perennial in its native range. In its introduced range, we previously documented increased rates of iteroparity and a higher median threshold flowering size compared to the native range. We hypothesized that the recent introduction of a specialist biocontrol insect (a root-boring weevil, Mogulones crucifer) would decrease threshold flowering size and reduce the proportion of iteroparous plants because M. crucifer preferentially attacks large individuals and may reduce overwinter survival. METHODS We surveyed 24 sites across the northwestern United States to quantify the frequency of semelparity versus iteroparity and to estimate weevil abundance and used demographic data collected from six sites to estimate median threshold flowering size. RESULTS We found that sites with greater winter precipitation and no weevils had a greater proportion of iteroparous plants. Sites with higher weevil attack had a lower median threshold flowering size. CONCLUSIONS The variation in frequency of flowering and threshold flowering size that we documented in North American houndstongue populations, and the relationships between this variation and herbivory and climate, provide evidence for how selective pressures covary with the life histories of invasive plants.
Collapse
Affiliation(s)
- Sophie S Duncan
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 217-1984 West Mall, Vancouver, BC, V6T 1Z2, Canada
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, 217-1984 West Mall, Vancouver, BC, V6T 1Z2, Canada
| |
Collapse
|
5
|
Chiffard J, Delestrade A, Yoccoz NG, Loison A, Besnard A. Warm temperatures during cold season can negatively affect adult survival in an alpine bird. Ecol Evol 2019; 9:12531-12543. [PMID: 31788195 PMCID: PMC6875669 DOI: 10.1002/ece3.5715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/07/2022] Open
Abstract
Climate seasonality is a predominant constraint on the lifecycles of species in alpine and polar biomes. Assessing the response of these species to climate change thus requires taking into account seasonal constraints on populations. However, interactions between seasonality, weather fluctuations, and population parameters remain poorly explored as they require long-term studies with high sampling frequency. This study investigated the influence of environmental covariates on the demography of a corvid species, the alpine chough Pyrrhocorax graculus, in the highly seasonal environment of the Mont Blanc region. In two steps, we estimated: (1) the seasonal survival of categories of individuals based on their age, sex, etc., (2) the effect of environmental covariates on seasonal survival. We hypothesized that the cold season-and more specifically, the end of the cold season (spring)-would be a critical period for individuals, and we expected that weather and individual covariates would influence survival variation during critical periods. We found that while spring was a critical season for adult female survival, it was not for males. This is likely because females are dominated by males at feeding sites during snowy seasons (winter and spring), and additionally must invest energy in egg production. When conditions were not favorable, which seemed to happen when the cold season was warmer than usual, females probably reached their physiological limits. Surprisingly, adult survival was higher at the beginning of the cold season than in summer, which may result from adaptation to harsh weather in alpine and polar vertebrates. This hypothesis could be confirmed by testing it with larger sets of populations. This first seasonal analysis of individual survival over the full life cycle in a sedentary alpine bird shows that including seasonality in demographic investigations is crucial to better understand the potential impacts of climate change on cold ecosystems.
Collapse
Affiliation(s)
- Jules Chiffard
- Ecole Pratique des Hautes Etudes (EPHE)Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)UMR 5175Centre National de la Recherche Scientifique (CNRS)PSL Research UniversityMontpellierFrance
| | - Anne Delestrade
- Centre de Recherches sur les Ecosystèmes d'Altitude (CREA)Observatoire du Mont BlancChamonixFrance
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Nigel Gilles Yoccoz
- Centre de Recherches sur les Ecosystèmes d'Altitude (CREA)Observatoire du Mont BlancChamonixFrance
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Anne Loison
- Laboratoire d'Ecologie Alpine (LECA)CNRSUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Aurélien Besnard
- Ecole Pratique des Hautes Etudes (EPHE)Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)UMR 5175Centre National de la Recherche Scientifique (CNRS)PSL Research UniversityMontpellierFrance
| |
Collapse
|