1
|
Renoirt M, Angelier F, Cheron M, Brischoux F. What are the contributions of maternal and paternal traits to fecundity and offspring development? A case study in an amphibian species, the spined toad Bufo spinosus. Curr Zool 2023; 69:527-534. [PMID: 37637310 PMCID: PMC10449425 DOI: 10.1093/cz/zoac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 08/29/2023] Open
Abstract
Assessing the determinants of reproductive success is critical but often complicated because of complex interactions between parental traits and environmental conditions occurring during several stages of a reproductive event. Here, we used a simplified ecological situation-an amphibian species lacking post-oviposition parental care-and a laboratory approach to investigate the relationships between parental (both maternal and paternal) phenotypes (body size and condition) and reproductive success (fecundity, egg size, embryonic and larval duration, larval and metamorphic morphology). We found significant effects of maternal phenotype on fecundity, hatching success, and tadpole size, as well as on the duration of larval development. Interestingly, and more surprisingly, we also found a potential contribution of the paternal phenotype occurring during early (embryonic development duration) offspring development. Although our study focused on life-history traits such as body size and development duration, additional mechanisms involving physiological costs of development may well mediate the relationships between parental phenotypes and offspring development. Future studies are required to decipher the mechanisms underlying our findings in order to clarify the mechanistic basis of the links between parental phenotypes and offspring development.
Collapse
Affiliation(s)
- Matthias Renoirt
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Frédéric Angelier
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Marion Cheron
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - François Brischoux
- Centre d’Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
2
|
Does Exposure to Predator Cues Influence Movement Behavior of Postmetamorphic Juvenile Rana aurora? J HERPETOL 2022. [DOI: 10.1670/21-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Peters H, Laberge F, Heyland A. Latent effect of larval rearing environment on post-metamorphic brain growth in an anuran amphibian. ZOOLOGY 2022; 152:126011. [DOI: 10.1016/j.zool.2022.126011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
|
4
|
Embryonic antipredator defenses and behavioral carryover effects in the fathead minnow (Pimephales promelas). Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Urbina J, Bredeweg EM, Blaustein AR, Garcia TS. Direct and Latent Effects of Pathogen Exposure Across Native and Invasive Amphibian Life Stages. Front Vet Sci 2021; 8:732993. [PMID: 34778428 PMCID: PMC8585985 DOI: 10.3389/fvets.2021.732993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases are one of the multiple factors contributing to the current "biodiversity crisis". As part of the worldwide biodiversity crisis, amphibian populations are declining globally. Chytridiomycosis, an emerging infectious disease, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is a major cause of amphibian population declines. This fungus primarily affects keratinized structures in larval, juvenile, and adult amphibians as well as heart function. However, we know little about how Bd can impact embryos as well as potential latent effects of Bd exposure over ontogeny. Using two different Bd strains and multiple exposure times, we examined the effects of Bd exposure in Pacific chorus frog (Pseudacris regilla), Western toad (Anaxyrus boreas) and American bullfrog (Lithobates catesbeianus) life stages. Using a factorial experimental design, embryos of these three species were exposed to Bd at early and late embryonic stages, with some individuals re-exposed after hatching. Embryonic Bd exposure resulted in differential survival as a function of host species, Bd strain and timing of exposure. P. regilla experienced embryonic mortality when exposed during later developmental stages to one Bd strain. There were no differences across the treatments in embryonic mortality of A. boreas and embryonic mortality of L. catesbeianus occurred in all Bd exposure treatments. We detected latent effects in A. boreas and L. catesbeianus larvae, as mortality increased when individuals had been exposed to any of the Bd strains during the embryonic stage. We also detected direct effects on larval mortality in all three anuran species as a function of Bd strain, and when individuals were double exposed (late in the embryonic stage and again as larvae). Our results suggest that exposure to Bd can directly affect embryo survival and has direct and latent effects on larvae survival of both native and invasive species. However, these impacts were highly context dependent, with timing of exposure and Bd strain influencing the severity of the effects.
Collapse
Affiliation(s)
- Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Evan M Bredeweg
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Tiffany S Garcia
- Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02315. [PMID: 33636022 PMCID: PMC8243920 DOI: 10.1002/eap.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C. Donelan
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Matthew B. Ogburn
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| |
Collapse
|
7
|
Szabo B, Damas-Moreira I, Whiting MJ. Can Cognitive Ability Give Invasive Species the Means to Succeed? A Review of the Evidence. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Awareness of danger inside the egg: Evidence of innate and learned predator recognition in cuttlefish embryos. Learn Behav 2020; 48:401-410. [PMID: 32221844 DOI: 10.3758/s13420-020-00424-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Predation can be a very strong selective pressure on prey. Many studies have shown the existence of innate anti-predator responses, mostly in the early developmental stages of juvenile vertebrates. Learning to recognize predators is another possible defensive resource, but such a method involves a high death risk. There is evidence that prenatal learning exists in animals but few studies have explicitly tested for embryonic learning. The aim of this study was to test innate and learned predator recognition in cuttlefish embryos. For this, naïve embryos were exposed to chemical and visual cues emanating from predators, non-predators, and ink. Their response was assessed by measuring their ventilation rate (VR). We first show that VR decreased in response to both visual and chemical predatory cues and ink but not to non-predatory cues. Second, we show that when non-predatory cues (visual or chemical) are paired with predatory cues or ink for several days, embryonic VR significantly decreased. Such a response is likely adaptive, especially in a translucent egg, since it results in reduced movement and hence may lower the risk of detection by visual predators. This freezing-like behavior may also reduce the bioelectric field, thus lessening the predation risk by non-visual foragers. Our results report that cuttlefish embryos had an innate capacity to differentiate between harmless and harmful chemical and visual cues. They were also capable of learning to respond to harmless cues when they were paired with danger (predator or ink) based on conditioning. The combination of these behavioral mechanisms is an example of the early adaptability of cephalopods. Such behavioral plasticity may give the newly hatched cuttlefish a selective advantage when dealing with either known or unfamiliar threats. Nevertheless, more experiments are needed to test the efficiency of the embryos' response faced with known or new predators.
Collapse
|
9
|
Garcia TS, Bredeweg EM, Urbina J, Ferrari MCO. Evaluating adaptive, carry-over, and plastic antipredator responses across a temporal gradient in Pacific chorus frogs. Ecology 2019; 100:e02825. [PMID: 31325377 DOI: 10.1002/ecy.2825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 11/07/2022]
Abstract
The development of antipredator traits is dependent on the frequency and intensity of predator exposure over evolutionary and ecological time. We hypothesized that prey species would respond with increasing accuracy when exposed to predators across generational, ontogenetic, and immediate time scales. We assessed larval Pacific chorus frog (PSRE; Pseudacris regilla) individuals that varied in population sympatry, embryonic conditioning, and immediate exposure to stocked populations of rainbow trout (Oncorhynchus mykiss). Using PSRE populations from sites with and without resident rainbow trout, we conditioned embryos to trout odor, PSRE alarm cues, trout odor in combination with alarm cues, or control water. After being hatched and reared in control water, individuals were exposed to the four predator cue treatments using a fully factorial design. Tadpoles from populations with resident rainbow trout did not behave or develop differently than tadpoles originating from fishless sites. However, we found evidence that PSRE reduced predation risk with a combination of carry-over effect (i.e., transfer of information across life history stages) and within-life stage phenotypically plastic mechanisms. We found both developmental and behavioral carry-over effects: tadpoles conditioned with trout odor as embryos grew more slowly and took refuge more often than control animals. Within-life-stage behavioral plasticity was observed in tadpoles from all treatment groups, responding to predator cues with increased refuge use. Potentially additive effects of predator exposure on prey response should be considered when predicting the ability of prey to recognize novel threats.
Collapse
Affiliation(s)
- Tiffany S Garcia
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Evan M Bredeweg
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Jenny Urbina
- Environmental Science Program, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| |
Collapse
|
10
|
Chevalier RL. Evolution, kidney development, and chronic kidney disease. Semin Cell Dev Biol 2019; 91:119-131. [PMID: 29857053 PMCID: PMC6281795 DOI: 10.1016/j.semcdb.2018.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
There is a global epidemic of chronic kidney disease (CKD) characterized by a progressive loss of nephrons, ascribed in large part to a rising incidence of hypertension, metabolic syndrome, and type 2 diabetes mellitus. There is a ten-fold variation in nephron number at birth in the general population, and a 50% overall decrease in nephron number in the last decades of life. The vicious cycle of nephron loss stimulating hypertrophy by remaining nephrons and resulting in glomerulosclerosis has been regarded as maladaptive, and only partially responsive to angiotensin inhibition. Advances over the past century in kidney physiology, genetics, and development have elucidated many aspects of nephron formation, structure and function. Parallel advances have been achieved in evolutionary biology, with the emergence of evolutionary medicine, a discipline that promises to provide new insight into the treatment of chronic disease. This review provides a framework for understanding the origins of contemporary developmental nephrology, and recent progress in evolutionary biology. The establishment of evolutionary developmental biology (evo-devo), ecological developmental biology (eco-devo), and developmental origins of health and disease (DOHaD) followed the discovery of the hox gene family, the recognition of the contribution of cumulative environmental stressors to the changing phenotype over the life cycle, and mechanisms of epigenetic regulation. The maturation of evolutionary medicine has contributed to new investigative approaches to cardiovascular disease, cancer, and infectious disease, and promises the same for CKD. By incorporating these principles, developmental nephrology is ideally positioned to answer important questions regarding the fate of nephrons from embryo through senescence.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, P.O. Box 800386, Charlottesville, VA, United States.
| |
Collapse
|
11
|
Ituarte RB, Vázquez MG, Bas CC. Chemically induced plasticity in early life history of Palaemon argentinus: are chemical alarm cues conserved within palaemonid shrimps? ACTA ACUST UNITED AC 2019; 222:jeb.199984. [PMID: 31171603 DOI: 10.1242/jeb.199984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/04/2019] [Indexed: 11/20/2022]
Abstract
Most aquatic animals use infochemicals from both conspecifics and heterospecifics to assess local predation risks and enhance predator detection. Released substances from injured conspecifics and other species (chemical alarm cues) are reliable cues to indicate an imminent danger in a specific habitat and often mediate the development of inducible defenses. Amphibian and fish embryos have been shown to acquire this information while at the embryonic stage of development, in relation to the developing nervous system and sensory development. With the exception of Daphnia, there is no information on chemically mediated responses to alarm cues in embryos of any crustacean groups. Therefore, we tested whether embryo exposure to chemical cues simulating predation on conspecifics or heterospecifics (closely related, non-coexisting species), or a mixture of both, alters embryonic developmental time, size and morphology of the first larval instar in Palaemon argentinus (Crustacea: Decapoda). Embryonic exposure to chemical alarm cues from conspecifics shortened the embryonic developmental time and elicited larger larvae with a longer rostrum. Rostrum length of the first larval instar changed independently of their size, thus elongated rostra can be considered a defensive feature. Embryonic developmental time was not altered by chemical alarm cues from either heterospecifics or the mixed cues treatment; however, exposure to these cues resulted in larger larvae compared with the control group. Chemically induced morphological plasticity in larvae in response to alarm cues from con- and heterospecifics suggests that such cues are conserved in palaemonids shrimps, providing embryos with an innate recognition of heterospecific alarm cues as predicted by the phylogenetic relatedness hypothesis.
Collapse
Affiliation(s)
- Romina B Ituarte
- Grupo Zoología Invertebrados, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina .,Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina
| | - María G Vázquez
- Grupo Zoología Invertebrados, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina.,Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina
| | - Claudia C Bas
- Grupo Zoología Invertebrados, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina.,Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata 7600, Argentina
| |
Collapse
|
12
|
Walls SC, Gabor CR. Integrating Behavior and Physiology Into Strategies for Amphibian Conservation. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Crane AL, Helton EJ, Ferrari MC, Mathis A. Learning to find food: evidence for embryonic sensitization and juvenile social learning in a salamander. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|