1
|
Mpopetsi PP, Kadye WT. Functional diversity does not explain the co-occurrence of non-native species within a flow-modified African river system. JOURNAL OF FISH BIOLOGY 2024; 104:1262-1275. [PMID: 37837275 DOI: 10.1111/jfb.15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Globally, there is growing concern on the occurrence of multiple non-native species within invaded habitats. Proliferation of multiple non-native species together with anthropogenic-driven habitat modifications raise questions on the mechanisms facilitating the co-occurrence of these species and their potential impact within the recipient systems. Using the Great Fish River system (South Africa) which is anthropogenically-modified by inter-basin water transfer (IBWT), as a case study, this research employed trait-based approaches to explore patterns associated with the co-occurrence of multiple non-native fish species. This was achieved by investigating the role of functional diversity of non-native and native fishes in relation to their composition, distribution and environmental relationships. Nineteen functional traits that defined two broad ecological attributes (habitat use and feeding) were determined for 13 fish species that comprised eight native and five non-native fishes. We used these data to, firstly, evaluate functional diversity patterns and to compare functional traits of native and non-native fishes in the Great Fish River system. Secondly, we employed multivariate ordination analyses (factor analysis, RLQ and fourth-corner analyses) to investigate interspecific trait variations and potential species-trait-environmental relationships. From a functional diversity perspective, there were no significant differences in most functional diversity indices between native and non-native species. Despite interspecific variation in body morphology-related traits, we also found no clear separation between native and non-native species based on the ordination analysis of the functional traits. Furthermore, while RLQ ordination showed broad spatial patterns, the fourth-corner analyses revealed no significant relationships among species distribution, functional traits and environmental variables. The weak species-trait-environment relationship observed in this study suggests that environmental filtering was likely a poor determinant of functional trait structure within the Great Fish River. Modification of the natural flow regime may have weakened the relationship between species traits and the environment as has been shown in other systems.
Collapse
Affiliation(s)
- Pule P Mpopetsi
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Wilbert T Kadye
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| |
Collapse
|
2
|
Le Hen G, Balzani P, Haase P, Kouba A, Liu C, Nagelkerke LAJ, Theissen N, Renault D, Soto I, Haubrock PJ. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161486. [PMID: 36626991 DOI: 10.1016/j.scitotenv.2023.161486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Alien fish substantially impact aquatic communities. However, their effects on trait composition remain poorly understood, especially at large spatiotemporal scales. Here, we used long-term biomonitoring data (1984-2018) from 31 fish communities of the Rhine river in Germany to investigate compositional and functional changes over time. Average total community richness increased by 49 %: it was stable until 2004, then declined until 2010, before increasing until 2018. Average abundance decreased by 9 %. Starting from 198 individuals/m2 in 1984 abundance largely declined to 23 individuals/m2 in 2010 (-88 %), and then consequently increased by 678 % up to 180 individuals/m2 until 2018. Increases in abundance and richness starting around 2010 were mainly driven by the establishment of alien species: while alien species represented 5 % of all species and 0.1 % of total individuals in 1993, it increased to 30 % (7 species) and 32 % of individuals in 2018. Concomitant to the increase in alien species, average native species richness and abundance declined by 26 % and 50 % respectively. We identified increases in temperature, precipitation, abundance and richness of alien fish driving compositional changes after 2010. To get more insights on the impacts of alien species on fish communities, we used 12 biological and 13 ecological traits to compute four trait metrics each. Ecological trait dispersion increased before 2010, probably due to diminishing ecologically similar native species. No changes in trait metrics were measured after 2010, albeit relative shares of expressed trait modalities significantly changing. The observed shift in trait modalities suggested the introduction of new species carrying similar and novel trait modalities. Our results revealed significant changes in taxonomic and trait compositions following alien fish introductions and climatic change. To conclude, our analyses show taxonomic and functional changes in the Rhine river over 35 years, likely indicative of future changes in ecosystem services.
Collapse
Affiliation(s)
- Gwendaline Le Hen
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany.
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chunlong Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan, Hubei Province 430072, China
| | - Leopold A J Nagelkerke
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Nikola Theissen
- North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection, Hauptsitz, Leibnizstraße 10, 45659 Recklinghausen, Germany
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France
| | - Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| |
Collapse
|
3
|
Lan J, Sun Z, Feng J, Zhao C, Kang D, Zhu W, Zhao T, Su S. Unraveling the importance of functionally extreme tadpole types to functional diversity: a case study in temperate montane streams. Front Zool 2023; 20:7. [PMID: 36740695 PMCID: PMC9900998 DOI: 10.1186/s12983-023-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Functional diversity is important to maintain ecosystem functioning. Species with different ecomorphological traits may display distinct functional roles in ecosystems. Accordingly, functionally extreme species are more important as they can exhibit specific strategies. However, little is known about the distribution patterns of functionally extreme species at a local scale and whether the prior extinction of extreme species can cause significant effects on functional diversity. In addition, no empirical studies have been conducted on the microhabitat determinants of extreme species to maintain the functional diversity. RESULTS This study collected 1470 tadpoles belonging to 6 families and 20 anuran species. These species were subsequently divided into 65 functional entities based on their developmental stages to incorporate intraspecific traits variability. As a result, we detected seven extreme functional entities, accounting for 10.7% of the total number of entities. Moreover, the prior extinction of extreme entities can lead to a significant decrease in functional diversity compared with the random extinction of entities. Microhabitat variables such as conductivity, water depth, and current velocity determined the distribution of extreme entities. CONCLUSION Although the functionally extreme entities only represented a small proportion of the total number of tadpoles, they played irreplaceable roles in maintaining functional diversity. Their extinction may induce high functional vulnerability in tadpole communities. Therefore, anuran species with extreme tadpole traits need to be projected for amphibian conservation.
Collapse
Affiliation(s)
- Jing Lan
- grid.263906.80000 0001 0362 4044College of Fisheries, Southwest University, Chongqing, 400715 China ,grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Zijian Sun
- grid.263906.80000 0001 0362 4044College of Fisheries, Southwest University, Chongqing, 400715 China ,grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Jianyi Feng
- grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Chunlin Zhao
- grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Da Kang
- grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Wenbo Zhu
- grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Tian Zhao
- grid.263906.80000 0001 0362 4044College of Fisheries, Southwest University, Chongqing, 400715 China ,grid.9227.e0000000119573309CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Shengqi Su
- grid.263906.80000 0001 0362 4044College of Fisheries, Southwest University, Chongqing, 400715 China
| |
Collapse
|
4
|
Raffard A, Cucherousset J, Santoul F, Di Gesu L, Blanchet S. Climate and intraspecific variation in a consumer species drive ecosystem multifunctionality. OIKOS 2023. [DOI: 10.1111/oik.09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Allan Raffard
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Julien Cucherousset
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Univ. de Toulouse 3 Paul Sabatier, CNRS, IRD Toulouse France
| | - Frédéric Santoul
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Lucie Di Gesu
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| |
Collapse
|
5
|
Renault D, Hess MCM, Braschi J, Cuthbert RN, Sperandii MG, Bazzichetto M, Chabrerie O, Thiébaut G, Buisson E, Grandjean F, Bittebiere AK, Mouchet M, Massol F. Advancing biological invasion hypothesis testing using functional diversity indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155102. [PMID: 35398434 DOI: 10.1016/j.scitotenv.2022.155102] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Pioneering investigations on the effects of introduced populations on community structure, ecosystem functioning and services have focused on the effects of invaders on taxonomic diversity. However, taxonomic-based diversity metrics overlook the heterogeneity of species roles within and among communities. As the homogenizing effects of biological invasions on community and ecosystem processes can be subtle, they may require the use of functional diversity indices to be properly evidenced. Starting from the listing of major functional diversity indices, alongside the presentation of their strengths and limitations, we focus on studies pertaining to the effects of invasive species on native communities and recipient ecosystems using functional diversity indices. By doing so, we reveal that functional diversity of the recipient community may strongly vary at the onset of the invasion process, while it stabilizes at intermediate and high levels of invasion. As functional changes occurring during the lag phase of an invasion have been poorly investigated, we show that it is still unknown whether there are consistent changes in functional diversity metrics that could indicate the end of the lag phase. Thus, we recommend providing information on the invasion stage under consideration when computing functional diversity metrics. For the existing literature, it is also surprising that very few studies explored the functional difference between organisms from the recipient communities and invaders of the same trophic levels, or assessed the effects of non-native organism establishment into a non-analogue versus an analogue community. By providing valuable tools for obtaining in-depth diagnostics of community structure and functioning, functional diversity indices can be applied for timely implementation of restoration plans and improved conservation strategies. To conclude, our work provides a first synthetic guide for their use in hypothesis testing in invasion biology.
Collapse
Affiliation(s)
- David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Manon C M Hess
- Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), UMR Aix Marseille Université, Avignon Université, CNRS, IRD, France; Institut de recherche pour la conservation des zones humides méditerranéennes Tour du Valat, Le Sambuc, 13200 Arles, France; NGE-GUINTOLI, Saint-Etienne du Grès, Parc d'activités de Laurade - BP22, 13156 Tarascon Cedex, France
| | - Julie Braschi
- Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), UMR Aix Marseille Université, Avignon Université, CNRS, IRD, France; Naturalia-Environnement, Ingénierie en écologie, 20 Rue Lawrence Durrell, 84140 Avignon, France
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, United Kingdom
| | - Marta G Sperandii
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy
| | - Manuele Bazzichetto
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Olivier Chabrerie
- Université de Picardie Jules Verne, UMR 7058 CNRS EDYSAN, 1 rue des Louvels, 80037 Amiens Cedex 1, France
| | - Gabrielle Thiébaut
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Elise Buisson
- Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), UMR Aix Marseille Université, Avignon Université, CNRS, IRD, France
| | - Frédéric Grandjean
- Université de Poitiers, UMR CNRS 7267 EBI- Ecologie et Biologie des Interactions, équipe EES, 5 rue Albert Turpin, Bat B8-B35, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Anne-Kristel Bittebiere
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Maud Mouchet
- UMR 7204 MNHN-SU-CNRS CESCO, CP135, 57 rue Cuvier, 75005 Paris, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
6
|
Dias RM, Peláez O, Lopes TM, Oliveira AGD, Angulo-Valencia MA, Agostinho AA. Importance of protection strategies in the conservation of the flagship species “dourado” Salminus brasiliensis (Characiformes: Bryconidae). NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract In the upper Paraná River floodplain, the populations of Salminus brasiliensis have been subjected to several anthropic impacts, such as overfishing, the blocking of migratory routes by dams, and regulation of the flood regime. Its populations have disappeared or become depleted in most rivers in this basin. These populations are the target of protection measures aimed at restoring them. This study evaluated the abundance of this species in the upper Paraná River floodplain over a 26-year time series in sites under different degrees of protection. Despite the overall decrease in the abundance of S. brasiliensis across the region, the less impacted sites have higher abundances and exhibited a slower decline in the probability of occurrence. Over time, populations in less impacted sites also exhibited improved fish condition. Some protected areas in the upper Paraná River have had a mitigation effect by lowering the velocity of population decline and representing a constant source of propagule production for other areas. Our results reinforce the notion that populations threatened with low abundances take a long time to effectively recover their stocks. Thus, besides evaluating species conservation strategies, long-term studies are essential to subsidize management measures, such as fisheries regulations.
Collapse
|
7
|
Sturbois A, Cucherousset J, De Cáceres M, Desroy N, Riera P, Carpentier A, Quillien N, Grall J, Espinasse B, Cherel Y, Schaal G. Stable Isotope Trajectory Analysis (
SITA
): A new approach to quantify and visualize dynamics in stable isotope studies. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. Sturbois
- Vivarmor Nature, 18 C rue du Sabot Ploufragan France
- Réserve naturelle nationale de la Baie de Saint‐Brieuc, site de l'étoile, 22120 Hillion France
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc Dinard France
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| | - J. Cucherousset
- UMR 5174 EDB (Laboratoire Évolution & Diversité Biologique), CNRS, Université Paul Sabatier, IRD, 118 route de Narbonne Toulouse France
| | | | - N. Desroy
- Ifremer, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc Dinard France
| | - P. Riera
- Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, Place Georges Teissier CS90074, 29688, Roscoff Cedex France
| | - A. Carpentier
- Université de Rennes 1, BOREA, Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Campus de Beaulieu Rennes France
| | - N. Quillien
- France Energies Marines, 525 Avenue Alexis de Rochon Plouzané France
| | - J. Grall
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| | - B. Espinasse
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Y. Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS‐La Rochelle Université Villiers‐en‐Bois France
| | - G. Schaal
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/IFREMER BP 70, 29280 Plouzané France
| |
Collapse
|
8
|
Ghilardi M, Schiettekatte NMD, Casey JM, Brandl SJ, Degregori S, Mercière A, Morat F, Letourneur Y, Bejarano S, Parravicini V. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol Evol 2021; 11:13218-13231. [PMID: 34646464 PMCID: PMC8495780 DOI: 10.1002/ece3.8045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023] Open
Abstract
Trait-based approaches are increasingly used to study species assemblages and understand ecosystem functioning. The strength of these approaches lies in the appropriate choice of functional traits that relate to the functions of interest. However, trait-function relationships are often supported by weak empirical evidence.Processes related to digestion and nutrient assimilation are particularly challenging to integrate into trait-based approaches. In fishes, intestinal length is commonly used to describe these functions. Although there is broad consensus concerning the relationship between fish intestinal length and diet, evolutionary and environmental forces have shaped a diversity of intestinal morphologies that is not captured by length alone.Focusing on coral reef fishes, we investigate how evolutionary history and ecology shape intestinal morphology. Using a large dataset encompassing 142 species across 31 families collected in French Polynesia, we test how phylogeny, body morphology, and diet relate to three intestinal morphological traits: intestinal length, diameter, and surface area.We demonstrate that phylogeny, body morphology, and trophic level explain most of the interspecific variability in fish intestinal morphology. Despite the high degree of phylogenetic conservatism, taxonomically unrelated herbivorous fishes exhibit similar intestinal morphology due to adaptive convergent evolution. Furthermore, we show that stomachless, durophagous species have the widest intestines to compensate for the lack of a stomach and allow passage of relatively large undigested food particles.Rather than traditionally applied metrics of intestinal length, intestinal surface area may be the most appropriate trait to characterize intestinal morphology in functional studies.
Collapse
Affiliation(s)
- Mattia Ghilardi
- Reef Systems Research GroupDepartment of EcologyLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
- Department of Marine EcologyFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Nina M. D. Schiettekatte
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Jordan M. Casey
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Department of Marine ScienceMarine Science InstituteUniversity of Texas at AustinPort AransasTXUSA
| | - Simon J. Brandl
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Department of Marine ScienceMarine Science InstituteUniversity of Texas at AustinPort AransasTXUSA
- CESABCentre for the Synthesis and Analysis of BiodiversityInstitut Bouisson BertrandMontpellierFrance
| | - Samuel Degregori
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Alexandre Mercière
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Fabien Morat
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Yves Letourneur
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- UMR ENTROPIE (UR‐IRD‐CNRS‐IFREMER‐UNC)Université de la Nouvelle‐CalédonieNouméa CedexNew Caledonia
| | - Sonia Bejarano
- Reef Systems Research GroupDepartment of EcologyLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
9
|
Sun ZJ, Zhu W, Zhu WB, Zhao CL, Liao CL, Zou B, Xu D, Fan WB, Su SQ, Jiang JP, Zhao T. Spatiotemporal patterns of anuran functional diversity in temperate montane forests. Zool Res 2021; 42:412-416. [PMID: 34075734 PMCID: PMC8317188 DOI: 10.24272/j.issn.2095-8137.2020.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zi-Jian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,College of Fisheries, Southwest University, Chongqing 400715, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Wen-Bo Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chun-Lin Liao
- National Nature Reserve of Badagongshan, Sangzhi, Hunan 427100, China
| | - Bei Zou
- School of Biology Sciences, University Sains Malaysia, Penang 11800, Malaysia
| | - Dan Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,College of Fisheries, Southwest University, Chongqing 400715, China
| | - Wen-Bo Fan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Qi Su
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. E-mail:
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China.,College of Fisheries, Southwest University, Chongqing 400715, China. E-mail:
| |
Collapse
|
10
|
Garcia F, de Carvalho AR, Riem-Galliano L, Tudesque L, Albignac M, Ter Halle A, Cucherousset J. Stable Isotope Insights into Microplastic Contamination within Freshwater Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1024-1035. [PMID: 33410676 DOI: 10.1021/acs.est.0c06221] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microplastic pollution and ingestion are ubiquitous phenomena in freshwater ecosystems. However, our understanding of the role of trophic niche in microplastic ingestion is still limited. Here, we quantified the level of microplastic (700 μm to 5 mm) contamination for macroinvertebrates and fish within the Garonne river. We then used stable isotope analyses (δ13C and δ15N) to quantify trophic niches. We first demonstrated that the abundance of ingested microplastics differed between macroinvertebrates and fish and was not significantly related to microplastic pollution. We then found that microplastic characteristics (shape, color, size, and polymer composition) differ between the abiotic (surface waters and sediments) and biotic (ingested by macroinvertebrates and fish) compartments. The abundance of ingested microplastics increased with the size of organisms in both fish and macroinvertebrates and tended to increase with trophic position in macroinvertebrates only. Finally, the origin of the resources consumed by fish significantly affected the abundance of microplastics ingested. Altogether, these results suggest the absence of microplastic bioaccumulation in freshwater food webs and the dominance of direct consumption, most likely accidentally. The use of stable isotope analyses is therefore crucial to improve our understanding of microplastic ingestion by wild organisms.
Collapse
Affiliation(s)
- Flavien Garcia
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| | - Aline Reis de Carvalho
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| | - Louna Riem-Galliano
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| | - Loïc Tudesque
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| | - Magali Albignac
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alexandra Ter Halle
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julien Cucherousset
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|