1
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
2
|
Quiroga LB, Gordillo LF, Aragon-Traverso JH, Iribas FJ, Sanabria EA. Thermal sensitivity of Rhinella arenarum tadpole at low concentrations of dimethoate pesticides. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109884. [PMID: 38437997 DOI: 10.1016/j.cbpc.2024.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
One of the main causes of contamination of aquatic environments, which affects biotic communities, is the use of pesticides in agricultural regions. Amphibians are considered good bio-indicators of aquatic pollution, because they are one of the most susceptible groups to pollution. Several studies suggest that both pollution and climate change produce synergistic effects in amphibians which amplify the toxicity afecting survival, and malformations with an increase in temperature. We studied the sensitivity of sublethal concentrations of dimethoate in Rhinella arenarum tadpoles on two fitness related thermal traits including locomotor swimming performance and thermal tolerance limits (CTmax = critical thermal maximum and CTmin = critical thermal minimum). The locomotor performance of R. arenarum tadpoles decreased with increasing sublethal dimethoate concentrations up to ∼60 % at intermediates dimethoate concentration. The tadpoles showed a tendency to decrease their tolerance to high temperatures (CTmax) with increasing dimethoate concentration around ∼0.5 °C, however no significant differences were found among treatments. Similarly, tadpoles showed decreases in their cold resistance (CTmin) with dimethoate concentrations, around 1 °C the high concentrations of dimethoate. The increase of atypical climatic events, such as heat waves may put R. arenarum tadpoles at greater risk when exposed to dimethoate. Our results show that the sublethal concentrations of the dimethoate pesticide may affect the fitness and survival of the larvae of R. arenarum in natural, and seminatural enviroments.
Collapse
Affiliation(s)
- Lorena B Quiroga
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciana F Gordillo
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina.
| | - Juan H Aragon-Traverso
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco J Iribas
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina
| | - Eduardo A Sanabria
- Instituto de Ciencias Básicas (ICB), Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. José Ignacio de la Roza 230 (O), Capital, CP 5400 San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Rivadavia 1917, CP C1083ACA Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA Mendoza, Argentina.
| |
Collapse
|
3
|
Neptune TC, Benard MF. Photoperiod effects in a freshwater community: Amphibian larvae develop faster and zooplankton abundance increases under an early-season photoperiod. Ecol Evol 2023; 13:e10400. [PMID: 37560180 PMCID: PMC10408251 DOI: 10.1002/ece3.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Organisms that shift their phenologies in response to global warming will experience novel photic environments, as photoperiod (daylength) continues to follow the same annual cycle. How different organisms respond to novel photoperiods could result in phenological mismatches and altered interspecific interactions. We conducted an outdoor mesocosm experiment exposing green frog (Rana clamitans) larvae, gray treefrog (Hyla versicolor) larvae, phytoplankton, periphyton, and zooplankton to a three-month shift in photoperiod: an early-season photoperiod (simulating April) and a late-season photoperiod (simulating July). We manipulated photoperiod by covering and uncovering tanks with clear or light-blocking lids to mimic realistic changes in daylength. We assessed amphibian life history traits and measured phytoplankton, periphyton, and zooplankton abundances. Green frog larvae and gray treefrog metamorphs were more developed under the early-season photoperiod. Gray treefrog total length was also reduced, but photoperiod did not affect green frog total length. Although phytoplankton and periphyton abundances were not affected by photoperiod, copepod nauplii were in greater abundance under the early-season photoperiod. Overall, this simplified aquatic community did not exhibit significant changes to structure when exposed to a three-month shift in photoperiod. Temperate amphibians that breed earlier in the year may develop faster, which may have long-term costs to post-metamorphic growth and performance. Asynchronous shifts in zooplankton abundances in response to altered photoperiods could subsequently affect freshwater community structure. While photoperiod has been shown to individually affect freshwater organisms, our study using replicated outdoor wetland communities shows that the comprehensive effects of photoperiod may be less important than other cues such as temperature and precipitation.
Collapse
Affiliation(s)
- Troy C. Neptune
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Michael F. Benard
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
4
|
Zhang RY, Wild KH, Pottier P, Carrasco MI, Nakagawa S, Noble DWA. Developmental environments do not affect thermal physiological traits in reptiles: an experimental test and meta-analysis. Biol Lett 2023; 19:20230019. [PMID: 37161297 PMCID: PMC10170202 DOI: 10.1098/rsbl.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023] Open
Abstract
On a global scale, organisms face significant challenges due to climate change and anthropogenic disturbance. In many ectotherms, developmental and physiological processes are sensitive to changes in temperature and resources. Developmental plasticity in thermal physiology may provide adaptive advantages to environmental extremes if early environmental conditions are predictive of late-life environments. Here, we conducted a laboratory experiment to test how developmental temperature and maternal resource investment influence thermal physiological traits (critical thermal maximum: CTmax and thermal preference: Tpref) in a common skink (Lampropholis delicata). We then compared our experimental findings more broadly across reptiles (snakes, lizards and turtles) using meta-analysis. In both our experimental study and meta-analysis, we did not find evidence that developmental environments influence CTmax or Tpref. Furthermore, the effects of developmental environments on thermal physiology did not vary by age, taxon or climate zone (temperate/tropical). Overall, the magnitude of developmental plasticity on thermal physiology appears to be limited across reptile taxa suggesting that behavioural or evolutionary processes may be more important. However, there is a paucity of information across most reptile taxa, and a broader focus on thermal performance curves themselves will be critical in understanding the impacts of changing thermal conditions on reptiles in the future.
Collapse
Affiliation(s)
- Rose Y. Zhang
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Kristoffer H. Wild
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| | - Patrice Pottier
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2050, Australia
| | - Maider Iglesias Carrasco
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
- Doñana Biological Station-Spanish Research Council CSIC, Seville, 41092, Spain
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2050, Australia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
5
|
Mueller RL, Cressler CE, Schwartz RS, Chong RA, Butler M. Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development. Integr Org Biol 2023; 5:obad015. [PMID: 37143961 PMCID: PMC10153748 DOI: 10.1093/iob/obad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
Genome size varies ∼100,000-fold across eukaryotes and has long been hypothesized to be influenced by metamorphosis in animals. Transposable element accumulation has been identified as a major driver of increase, but the nature of constraints limiting the size of genomes has remained unclear, even as traits such as cell size and rate of development co-vary strongly with genome size. Salamanders, which possess diverse metamorphic and non-metamorphic life histories, join the lungfish in having the largest vertebrate genomes-3 to 40 times that of humans-as well as the largest range of variation in genome size. We tested 13 biologically-inspired hypotheses exploring how the form of metamorphosis imposes varying constraints on genome expansion in a broadly representative phylogeny containing 118 species of salamanders. We show that metamorphosis during which animals undergo the most extensive and synchronous remodeling imposes the most severe constraint against genome expansion, with the severity of constraint decreasing with reduced extent and synchronicity of remodeling. More generally, our work demonstrates the potential for broader interpretation of phylogenetic comparative analysis in exploring the balance of multiple evolutionary pressures shaping phenotypic evolution.
Collapse
Affiliation(s)
| | - C E Cressler
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - R S Schwartz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - R A Chong
- School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| | - M Butler
- School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Abstract
Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures.
Collapse
|
7
|
Ruthsatz K, Bartels F, Stützer D, Eterovick PC. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J Therm Biol 2022; 108:103296. [DOI: 10.1016/j.jtherbio.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
8
|
Ruthsatz K, Dausmann KH, Peck MA, Glos J. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:477-490. [PMID: 35226414 DOI: 10.1002/jez.2582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Phenotypic plasticity may allow ectotherms with complex life histories such as amphibians to cope with climate-driven changes in their environment. Plasticity in thermal tolerance (i.e., shifts of thermal limits via acclimation to higher temperatures) has been proposed as a mechanism to cope with warming and extreme thermal events. However, thermal tolerance and, hence, acclimation capacity, is known to vary with life stage. Using the common frog (Rana temporaria) as a model species, we measured the capacity to adjust lower (CTmin ) and upper (CTmax ) critical thermal limits at different acclimation temperatures. We calculated the acclimation response ratio as a metric to assess the stage-specific acclimation capacity at each of seven consecutive ontogenetic stages and tested whether acclimation capacity was influenced by body mass and/or age. We further examined how acclimation temperature, body mass, age, and ontogenetic stage influenced CTmin and CTmax . In the temperate population of R. temporaria that we studied, thermal tolerance and acclimation capacity were affected by the ontogenetic stage. However, acclimation capacity at both thermal limits was well below 100% at all life stages tested. The lowest and highest acclimation capacity in thermal limits was observed in young and late larvae, respectively. The relatively low acclimation capacity of young larvae highlights a clear risk of amphibian populations to ongoing climate change. Ignoring stage-specific differences in thermal physiology may drastically underestimate the climate vulnerability of species, which will hamper successful conservation actions.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | | | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg (Texel), The Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Enriquez‐Urzelai U, Nicieza AG, Montori A, Llorente GA, Urrutia MB. Physiology and acclimation potential are tuned with phenology in larvae of a prolonged breeder amphibian. OIKOS 2021. [DOI: 10.1111/oik.08566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alfredo G. Nicieza
- Biodiversity Research Inst. (IMIB), Univ. of Oviedo‐Principality of Asturias‐CSIC Oviedo Spain
- Ecology Unit, Dept of Biology of Organisms and Systems, Univ. of Oviedo Oviedo Spain
| | - Albert Montori
- CREAC, Centre de Recerca i Educació Ambiental de Calafell, Calafell Barcelona Spain
| | - Gustavo A. Llorente
- Dept of Evolutionary Biology, Ecology and Environmental Sciences and Inst. de Recerca de la Biodiversitat (IRBIO), Faculty of Biology, Univ. of Barcelona Barcelona Spain
| | - Miren Bego Urrutia
- Depto de Genética, Antropología Física y Fisiología Animal, Univ. del País Vasco/Euskal Herriko Unibertsitatea Bilbao Spain
| |
Collapse
|
10
|
A state-space approach to understand responses of organisms, populations and communities to multiple environmental drivers. Commun Biol 2021; 4:1142. [PMID: 34593937 PMCID: PMC8484576 DOI: 10.1038/s42003-021-02585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Understanding the response of biotic systems to multiple environmental drivers is one of the major concerns in ecology. The most common approach in multiple driver research includes the classification of interactive responses into categories (antagonistic, synergistic). However, there are situations where the use of classification schemes limits our understanding or cannot be applied. Here, we introduce and explore an approach that allows us to better appreciate variability in responses to multiple drivers. We then apply it to a case, comparing effects of heatwaves on performance of a cold-adapted species and a warm-adapted competitor. The heatwaves had a negative effect on the native (but not on the exotic) species and the approach highlighted that the exotic species was less responsive to multivariate environmental variation than the native species. Overall, we show how the proposed approach can enhance our understanding of variation in responses due to different driver intensities, species, genotypes, ontogeny, life-phases or among spatial scales at any level of biological organization. Giménez et al. explore a “state-space” approach (SSEA) to examine variation in effects of multiple environmental drivers on biological systems. They illustrate the SSEA with a case study where larvae of an exotic crab were less responsive to an experimental heatwave than those of a native species.
Collapse
|
11
|
Pintanel P, Tejedo M, Salinas-Ivanenko S, Jervis P, Merino-Viteri A. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient. J Anim Ecol 2021; 90:1985-1995. [PMID: 33942306 DOI: 10.1111/1365-2656.13516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023]
Abstract
Climate change may have dramatic consequences for communities through both direct effects of peak temperatures upon individual species and through interspecific mismatches in thermal sensitivities of interacting organisms which mediate changes in interspecific interactions (i.e. predation). Despite this, there is a paucity of information on the patterns of spatial physiological sensitivity of interacting species (at both landscape and local scales) which could ultimately influence geographical variation in the effects of climate change on community processes. In order to assess where these impacts may occur, we first need to evaluate the spatial heterogeneity in the degree of mismatch in thermal tolerances between interacting organisms. We quantify the magnitude of interspecific mismatch in maximum (CTmax ) and minimum (CTmin ) thermal tolerances among a predator-prey system of dragonfly and anuran larvae in tropical montane (242-3,631 m) and habitat (ponds and streams) gradients. To compare thermal mismatches between predator and prey, we coined the parameters maximum and minimum predatory tolerance margins (PTMmax and PTMmin ), or difference in CTmax and CTmin of interacting organisms sampled across elevational and habitat gradients. Our analyses revealed that: (a) predators exhibit higher heat tolerances than prey (~4°C), a trend which remained stable across habitats and elevations. In contrast, we found no differences in minimum thermal tolerances between these groups. (b) Maximum and minimum thermal tolerances of both predators and prey decreased with elevation, but only maximum thermal tolerance varied across habitats, with pond species exhibiting higher heat tolerance than stream species. (c) Pond-dwelling organisms from low elevations (0-1,500 m a.s.l.) may be more susceptible to direct effects of warming than their highland counterparts because their maximum thermal tolerances are only slightly higher than their exposed maximum environmental temperatures. The greater relative thermal tolerance of dragonfly naiad predators may further increase the vulnerability of lowland tadpoles to warming due to potentially enhanced indirect effects of higher predation rates by more heat-tolerant dragonfly predators. However, further experimental work is required to establish the individual and population-level consequences of this thermal tolerance mismatch upon biotic interactions such as predator-prey. .
Collapse
Affiliation(s)
- Pol Pintanel
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain.,Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Department for Posgraduate Studies, Faculty of Biological Sciences, Universidad Central del Ecuador, Quito, Ecuador.,Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Sofia Salinas-Ivanenko
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Phillip Jervis
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Institute of Zoology, Zoological Society of London, London, UK.,MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.,Department of Chemistry, University College London, London, UK
| | - Andrés Merino-Viteri
- Laboratorio de Ecofisiología and Museo de Zoología (QCAZ), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
12
|
Hoffmann EP, Cavanough KL, Mitchell NJ. Low desiccation and thermal tolerance constrains a terrestrial amphibian to a rare and disappearing microclimate niche. CONSERVATION PHYSIOLOGY 2021; 9:coab027. [PMID: 33959292 PMCID: PMC8084025 DOI: 10.1093/conphys/coab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 05/30/2023]
Abstract
Drier and hotter conditions caused by climate change threaten species that exist close to their physiological limits, as well as those with limited ability to move. Habitat specialists may also be particularly vulnerable if they have specific abiotic requirements. Here we assess whether thermal and hydric constraints can explain the highly restricted and declining distributions of the critically endangered terrestrial-breeding frog, Geocrinia alba. We also evaluate the species' vulnerability to climate change based on the similarity of current microclimatic conditions to their physiological limits. We found that G. alba had low thresholds of thermal and desiccation tolerance relative to other anuran species. The estimated thermal optimum (Topt ) and critical thermal maxima (CTmax ) were 23.3°C and 29.6°C, respectively, and adult frogs had an absorption threshold (AT, the lowest water potential at which water can be absorbed from a substrate) of -50 kPa, the lowest recorded for an amphibian. Comparing environmental conditions and water loss in the field using agar models showed that riparian habitats where frogs occur provide a unique microclimate in the landscape, offering significantly lower desiccation risk during extreme summer conditions compared to immediately adjacent riparian and terrestrial habitats. Monitoring of microclimate conditions within occupied frog habitats over 2 years showed that in extreme dry and hot years the AT was exceeded at six of eight sites, and Topt was exceeded at two of eight sites. Given their specific physiological limits, the apparent rarity of suitable microclimates and a regional drying-warming trend, we suggest that G. alba occupies a potentially disappearing niche and may be indicative of other habitat specialists that rely on ephemeral drainages. More broadly, this study highlights that desiccation thresholds may tightly constrain amphibian distributions and need to be considered along with thermal tolerance thresholds when predicting the impacts of climate change.
Collapse
Affiliation(s)
- Emily P Hoffmann
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Karen L Cavanough
- Perth Zoo, Department of Biodiversity, Conservation and Attractions, PO Box 489, South Perth, Western Australia 6951, Australia
| | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
13
|
Lowe WH, Martin TE, Skelly DK, Woods HA. Metamorphosis in an Era of Increasing Climate Variability. Trends Ecol Evol 2021; 36:360-375. [PMID: 33414021 DOI: 10.1016/j.tree.2020.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Most animals have complex life cycles including metamorphosis or other discrete life stage transitions, during which individuals may be particularly vulnerable to environmental stressors. With climate change, individuals will be exposed to increasing thermal and hydrologic variability during metamorphosis, which may affect survival and performance through physiological, behavioral, and ecological mechanisms. Furthermore, because metamorphosis entails changes in traits and vital rates, it is likely to play an important role in how populations respond to increasing climate variability. To identify mechanisms underlying population responses and associated trait and life history evolution, we need new approaches to estimating changes in individual traits and performance throughout metamorphosis, and we need to integrate metamorphosis as an explicit life stage in analytical models.
Collapse
Affiliation(s)
- Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Thomas E Martin
- US Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | - David K Skelly
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
14
|
Bodensteiner BL, Agudelo‐Cantero GA, Arietta AZA, Gunderson AR, Muñoz MM, Refsnider JM, Gangloff EJ. Thermal adaptation revisited: How conserved are thermal traits of reptiles and amphibians? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:173-194. [DOI: 10.1002/jez.2414] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | - Gustavo A. Agudelo‐Cantero
- Department of Physiology, Institute of Biosciences University of São Paulo São Paulo Brazil
- Department of Biology ‐ Genetics, Ecology, and Evolution Aarhus University Aarhus Denmark
| | | | - Alex R. Gunderson
- Department of Ecology and Evolutionary Biology Tulane University New Orleans Louisiana USA
| | - Martha M. Muñoz
- Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA
| | | | - Eric J. Gangloff
- Department of Zoology Ohio Wesleyan University Delaware Ohio USA
| |
Collapse
|
15
|
Enriquez‐Urzelai U, Tingley R, Kearney MR, Sacco M, Palacio AS, Tejedo M, Nicieza AG. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J Anim Ecol 2020; 89:1722-1734. [DOI: 10.1111/1365-2656.13222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/29/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Urtzi Enriquez‐Urzelai
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| | - Reid Tingley
- School of Biological Sciences Monash University Clayton Vic. Australia
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Michael R. Kearney
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Martina Sacco
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| | - Antonio S. Palacio
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| | - Miguel Tejedo
- Department of Evolutionary Ecology Estación Biológica de DoñanaCSIC Sevilla Spain
| | - Alfredo G. Nicieza
- Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
- Research Unit of Biodiversity (UO‐CSIC‐PA)Campus de Mieres Mieres Spain
| |
Collapse
|
16
|
Critical Thermal Limits Do Not Vary between Wild-caught and Captive-bred Tadpoles of Agalychnis spurrelli (Anura: Hylidae). DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Captive-bred organisms are widely used in ecology, evolution and conservation research, especially in scenarios where natural populations are scarce or at risk of extinction. Yet, it is still unclear whether captivity may alter thermal tolerances, crucial traits to predict species resilience to global warming. Here, we study whether captive-bred tadpoles of the gliding treefrog (Agalychnis spurrelli) show different thermal tolerances than wild-caught individuals. Our results show that there are no differences between critical thermal limits (CTmax and CTmin) of captive-bred and wild-caught tadpoles exposed to three-day acclimatization at 20 °C. Therefore, we suggest that the use of captive-bred amphibians is valid and may be appropriate in experimental comparisons to thermal physiological studies of wild populations.
Collapse
|
17
|
Gunderson AR, Fargevieille A, Warner DA. Egg incubation temperature does not influence adult heat tolerance in the lizard Anolis sagrei. Biol Lett 2020; 16:20190716. [PMID: 31937216 DOI: 10.1098/rsbl.2019.0716] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extreme heat events are becoming more common as a result of anthropogenic global change. Developmental plasticity in physiological thermal limits could help mitigate the consequences of thermal extremes, but data on the effects of early temperature exposure on thermal limits later in life are rare, especially for vertebrate ectotherms. We conducted an experiment that to our knowledge is the first to isolate the effect of egg (i.e. embryonic) thermal conditions on adult heat tolerance in a reptile. Eggs of the lizard Anolis sagrei were incubated under one of three fluctuating thermal regimes that mimicked natural nest environments and differed in mean and maximum temperatures. After emergence, all hatchlings were raised under common garden conditions until reproductive maturity, at which point heat tolerance was measured. Egg mortality was highest in the warmest treatment, and hatchlings from the warmest treatment tended to have greater mortality than those from the cooler treatments. Despite evidence that incubation temperatures were stressful, we found no evidence that incubation treatment influenced adult heat tolerance. Our results are consistent with a low capacity for organisms to increase their physiological heat tolerance via plasticity, and emphasize the importance of behavioural and evolutionary processes as mechanisms of resilience to extreme heat.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | | | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Enriquez-Urzelai U, Kearney MR, Nicieza AG, Tingley R. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. GLOBAL CHANGE BIOLOGY 2019; 25:2633-2647. [PMID: 31050846 DOI: 10.1111/gcb.14673] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Insights into the causal mechanisms that limit species distributions are likely to improve our ability to anticipate species range shifts in response to climate change. For species with complex life histories, a mechanistic understanding of how climate affects different lifecycle stages may be crucial for making accurate forecasts. Here, we use mechanistic niche modeling (NicheMapR) to derive "proximate" (mechanistic) variables for tadpole, juvenile, and adult Rana temporaria. We modeled the hydroperiod, and maximum and minimum temperatures of shallow (30 cm) ponds, as well as activity windows for juveniles and adults. We then used those ("proximate") variables in correlative ecological niche models (Maxent) to assess their role in limiting the species' current distribution, and to investigate the potential effects of climate change on R. temporaria across Europe. We further compared the results with a model based on commonly used macroclimatic ("distal") layers (i.e., bioclimatic layers from WorldClim). The maximum temperature of the warmest month (a macroclimatic variable) and maximum pond temperatures (a mechanistic variable) were the most important range-limiting factors, and maximum temperature thresholds were consistent with the observed upper thermal limit of R. temporaria tadpoles. We found that range shift forecasts in central Europe are far more pessimistic when using distal macroclimatic variables, compared to projections based on proximate mechanistic variables. However, both approaches predicted extensive decreases in climatic suitability in southern Europe, which harbors a significant fraction of the species' genetic diversity. We show how mechanistic modeling provides ways to depict gridded layers that directly reflect the microenvironments experienced by organisms at continental scales, and to reconstruct those predictors without extrapolation under novel future conditions. Furthermore, incorporating those predictors in correlative ecological niche models can help shed light on range-limiting processes, and can have substantial impacts on predictions of climate-induced range shifts.
Collapse
Affiliation(s)
- Urtzi Enriquez-Urzelai
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo UO, Oviedo, Spain
- UMIB: Unidad Mixta de Investigación en Biodiversidad (UO-CSIC-PA), Mieres, Spain
| | - Michael R Kearney
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Alfredo G Nicieza
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo UO, Oviedo, Spain
- UMIB: Unidad Mixta de Investigación en Biodiversidad (UO-CSIC-PA), Mieres, Spain
| | - Reid Tingley
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| |
Collapse
|
19
|
Refsnider JM, Clifton IT, Vazquez TK. Developmental plasticity of thermal ecology traits in reptiles: Trends, potential benefits, and research needs. J Therm Biol 2019; 84:74-82. [DOI: 10.1016/j.jtherbio.2019.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/15/2022]
|
20
|
Mueller CA, Bucsky J, Korito L, Manzanares S. Immediate and Persistent Effects of Temperature on Oxygen Consumption and Thermal Tolerance in Embryos and Larvae of the Baja California Chorus Frog, Pseudacris hypochondriaca. Front Physiol 2019; 10:754. [PMID: 31275167 PMCID: PMC6591441 DOI: 10.3389/fphys.2019.00754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023] Open
Abstract
The developmental environment has significant immediate effects on phenotypes, but it may also persistently or permanently shape phenotypes across life history. This study examined how developmental temperature influenced embryonic and larval phenotypes of Baja California chorus frog (Pseudacris hypochondriaca), an abundant amphibian in southern California and northern Baja California. We collected egg clutches from native ponds in northern San Diego County within 24 h of fertilization, and clutches were separated and distributed between constant temperatures of 10, 15, 20, and 25°C for incubation. Oxygen consumption rate (V˙O2), developmental stage, and embryo and yolk masses were measured throughout development. Time to 50% hatch, survival at 50% hatch, and hatch duration were determined. Development rate was strongly affected by temperature, with warmer temperatures reducing time to hatch and hatch duration. Survival to hatch was high across all temperatures, >90%. Mass-specific V˙O2 of embryos either remained constant or increased throughout development, and by hatching energy demand was significantly increased at higher temperatures. There were limited temperature effects on growth, with embryo and yolk dry mass similar between temperatures throughout embryonic development. To examine long-term effects of embryonic temperature, we reared hatchlings from each temperature until onset of larval feeding. Once feeding, larvae were acclimated to 20 or 25°C (>2 weeks). Following acclimation to 20 or 25°C, we measured larval mass-specific V˙O2 and critical thermal maximum (CTMax) at a common developmental stage (Gosner stages 32–36, “hindlimb toe differentiation”). Embryonic temperature had persistent effects on larval V˙O2 and CTMax, with warmer temperatures generally resulting in similar or higher V˙O2 and CTMax. This partially supported a “warmer is better” effect of embryonic incubation temperature. These results suggest that in a thermally robust amphibian species, temperature may program the phenotype during early development to construct traits in thermal tolerance and energy use that may persist. Overall, P. hypochondriaca displays a thermally robust phenotype, and it is possible that amphibians that possess a wider range of phenotypic plasticity will be relatively more successful mitigating effects of climate change.
Collapse
Affiliation(s)
- Casey A Mueller
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Julie Bucsky
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Lindsey Korito
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Samantha Manzanares
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| |
Collapse
|
21
|
Agudelo-Cantero GA, Navas CA. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J Therm Biol 2019; 82:43-51. [PMID: 31128658 DOI: 10.1016/j.jtherbio.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Biological and methodological factors influence the upper thermal limits (UTL) of ectothermic animals, but most factors have been studied independently. Few studies have integrated variables, so our understanding about sources of UTL variation remains fragmentary. Thereby, we investigated synergic effects of experimental protocols (heating rates, ΔTs) and biological factors (ontogeny and body mass) on the UTL on the larvae of two anuran species (Physalaemus nattereri and Boana pardalis), specifically their Critical Thermal Maximum (CTmax). The species displayed slightly different responses to ΔTs: In B. pardalis tadpoles both average and variance of CTmax increased at a fastest ΔT, the same response happened in P. nattereri tadpoles at slow and moderate ΔTs. Also, the CTmax of P. nattereri declined at the end of metamorphosis independently of ΔT, but tadpoles at all developmental stages still displayed higher heat tolerance at the slow ΔT. Finally, we detected small, synergic effects of body mass and ΔTs on the CTmax of both species. In small B. pardalis tadpoles and premetamorphic P. nattereri tadpoles, body mass had a positive effect on CTmax, but only at slow and moderate ΔTs, probably indicating physiological responses. A similar trend was observed in large B. pardalis tadpoles at the fast ΔT, but this result is likely to be influenced by thermal inertia. Our findings contribute to integrate the understanding of factors influencing UTL in small ectothermic animals. This understanding is critical to discuss the physiological component of vulnerability to climate change that is related to acute temperatures.
Collapse
Affiliation(s)
- Gustavo A Agudelo-Cantero
- Graduate School Program in General Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Travessa 14, CEP 05508-090, São Paulo, Brazil.
| | - Carlos A Navas
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Travessa 14, CEP 05508-090, São Paulo, Brazil.
| |
Collapse
|