1
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
2
|
Finnie S, Butterill P, Novotny V, Redmond C, Jorge LR, Abe T, Lamarre GPA, Maicher V, Sam K. Vertical stratification and defensive traits of caterpillars against parasitoids in a lowland tropical forest in Cameroon. Oecologia 2024; 204:915-930. [PMID: 38613574 PMCID: PMC11062930 DOI: 10.1007/s00442-024-05542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 04/15/2024]
Abstract
Insect herbivores and their parasitoids play a crucial role in terrestrial trophic interactions in tropical forests. These interactions occur across the entire vertical gradient of the forest. This study compares how caterpillar communities, and their parasitism rates, vary across vertical strata and between caterpillar defensive strategies in a semi deciduous tropical forest in Nditam, Cameroon. Within a 0.1 ha plot, all trees with a diameter at breast height (DBH) ≥ 5 cm were felled and systematically searched for caterpillars. We divided the entire vertical gradient of the forest into eight, five-metre strata. All caterpillars were assigned to a stratum based on their collection height, reared, identified, and classified into one of three defensive traits: aposematic, cryptic and shelter-building. Caterpillar species richness and diversity showed a midstory peak, whereas density followed the opposite pattern, decreasing in the midstory and then increasing towards the highest strata. This trend was driven by some highly dense shelter-building caterpillars in the upper canopy. Specialisation indices indicated decreasing levels of caterpillar generality with increasing height, a midstory peak in vulnerability, and increasing connectance towards the upper canopy, although the latter was likely driven by decreasing network size. Both aposematic and shelter-building caterpillars had significantly higher parasitism rates than cryptic caterpillars. Our results highlight nuanced changes in caterpillar communities across forest strata and provide evidence that defences strategies are important indicators of parasitism rates in caterpillars and that both aposematic and shelter-building caterpillars could be considered a "safe haven" for parasitoids.
Collapse
Affiliation(s)
- Sam Finnie
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Philip Butterill
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtech Novotny
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Conor Redmond
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Leonardo Ré Jorge
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomokazu Abe
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Greg P A Lamarre
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Ancon, Panama
| | - Vincent Maicher
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- The Nature Conservancy (TNC), Libreville, Gabon
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Rosenberg Y, Bar-On YM, Fromm A, Ostikar M, Shoshany A, Giz O, Milo R. The global biomass and number of terrestrial arthropods. SCIENCE ADVANCES 2023; 9:eabq4049. [PMID: 36735788 PMCID: PMC9897674 DOI: 10.1126/sciadv.abq4049] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
Insects and other arthropods are central to terrestrial ecosystems. However, data are lacking regarding their global population abundance. We synthesized thousands of evaluations from around 500 sites worldwide, estimating the absolute biomass and abundance of terrestrial arthropods across different taxa and habitats. We found that there are ≈1 × 1019 (twofold uncertainty range) soil arthropods on Earth, ≈95% of which are soil mites and springtails. The soil contains ≈200 (twofold uncertainty range) million metric tons (Mt) of dry biomass. Termites contribute ≈40% of the soil biomass, much more than ants at ≈10%. Our estimate for the global biomass of above-ground arthropods is more uncertain, highlighting a knowledge gap that future research should aim to close. We estimate the combined dry biomass of all terrestrial arthropods at ≈300 Mt (uncertainty range, 100 to 500), similar to the mass of humanity and its livestock. These estimates enhance the quantitative understanding of arthropods in terrestrial ecosystems and provide an initial holistic benchmark on their decline.
Collapse
Affiliation(s)
| | | | - Amir Fromm
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Ostikar
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Shoshany
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Giz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Volf M, Volfová T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM. A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 2021; 25:729-739. [PMID: 34958165 DOI: 10.1111/ele.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.
Collapse
Affiliation(s)
- Martin Volf
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tereza Volfová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Carlo L Seifert
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Faculty of Forest Sciences and Forest Ecology, Department of Forest Nature Conservation, Georg-August-University, Göttingen, Germany
| | - Antonia Ludwig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Rolf A Engelmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonardo Ré Jorge
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Seifert CL, Jorge LR, Volf M, Wagner DL, Lamarre GPA, Miller SE, Gonzalez‐Akre E, Anderson‐Teixeira KJ, Novotný V. Seasonality affects specialisation of a temperate forest herbivore community. OIKOS 2021. [DOI: 10.1111/oik.08265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Carlo L. Seifert
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Leonardo R. Jorge
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
| | - David L. Wagner
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Greg P. A. Lamarre
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Scott E. Miller
- National Museum of Natural History, Smithsonian Inst. Washington D.C. USA
| | - Erika Gonzalez‐Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Inst. Front Royal VA USA
| | | | - Vojtěch Novotný
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
- ForestGEO, Smithsonian Tropical Research Inst. Balboa Ancon Panama
| |
Collapse
|
6
|
Seifert CL, Volf M, Jorge LR, Abe T, Carscallen G, Drozd P, Kumar R, Lamarre GPA, Libra M, Losada ME, Miller SE, Murakami M, Nichols G, Pyszko P, Šigut M, Wagner DL, Novotný V. Plant phylogeny drives arboreal caterpillar assemblages across the Holarctic. Ecol Evol 2020; 10:14137-14151. [PMID: 33732431 PMCID: PMC7771119 DOI: 10.1002/ece3.7005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co-occurring plant species.Using a Holarctic dataset of exposed-feeding and shelter-building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.Our plant-caterpillar network data derived from plot-based samplings at three different continents included >28,000 individual caterpillar-plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed-feeding and shelter-building caterpillars.Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host-specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large-scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
Collapse
Affiliation(s)
- Carlo L Seifert
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Martin Volf
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
| | - Leonardo R Jorge
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | | | - Grace Carscallen
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
| | - Pavel Drozd
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Rajesh Kumar
- Central Sericultural Research and Training Institute Central Silk Board Ministry of Textiles Govt. of India Pampore Jammu and Kashmir India
| | - Greg P A Lamarre
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- ForestGEO Smithsonian Tropical Research Institute Balboa, Ancon Panama
| | - Martin Libra
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Maria E Losada
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
- National Museum of Natural History Smithsonian Institution Washington DC USA
| | - Scott E Miller
- National Museum of Natural History Smithsonian Institution Washington DC USA
| | | | - Geoffrey Nichols
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
| | - Petr Pyszko
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | - Martin Šigut
- Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Vojtěch Novotný
- Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
7
|
Eisenring M, Unsicker SB, Lindroth RL. Spatial, genetic and biotic factors shape within‐crown leaf trait variation and herbivore performance in a foundation tree species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Eisenring
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
- Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical Ecology Jena Germany
| | | |
Collapse
|