1
|
Yao K, Huang X, Dong W, Wang F, Liu X, Yan Y, Qu Y, Fu Y. Changes of nitrogen and phosphorus removal pattern caused by alternating aerobic/anoxia from the perspective of microbial characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68863-68876. [PMID: 37129825 DOI: 10.1007/s11356-023-27302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to compare the impact of different numbers of alternating aerobic/anoxic (A/O) cycles on pollutant removal. Three sequential batch reactors (SBRs) with varying numbers of alternating A/O cycles were established. Under the tertiary anoxic operating conditions, the removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were 88.73%, 89.56%, 72.15%, and 77.61%, respectively. Besides, alternating A/O affected the dominant microbial community relative abundance (Proteobacteria and Bacteroidetes) and increased microbial richness and diversity. It also increased the relative abundance of aerobic denitrifying, heterotrophic nitrifying, and denitrifying phosphorus removal bacteria to change N and P removal patterns. Furthermore, the abundance of carbohydrate metabolism and amino acid metabolism was improved by alternating A/O to improve organic matter and TN removal.
Collapse
Affiliation(s)
- Kai Yao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fupeng Wang
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
| | - Xueyong Liu
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yu Yan
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yanhui Qu
- China Urban and Rural Holdings Group Co. Ltd, Beijing, 100029, China
| | - Yicheng Fu
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
2
|
James SN, Vijayanandan A. Recent advances in simultaneous nitrification and denitrification for nitrogen and micropollutant removal: a review. Biodegradation 2023; 34:103-123. [PMID: 36899211 DOI: 10.1007/s10532-023-10015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
Simultaneous Nitrification and Denitrification (SND) is a promising process for biological nitrogen removal. Compared to conventional nitrogen removal processes, SND is cost-effective due to the decreased structural footprint and low oxygen and energy requirements. This critical review summarizes the current knowledge on SND related to fundamentals, mechanisms, and influence factors. The creation of stable aerobic and anoxic conditions within the flocs, as well as the optimization of dissolved oxygen (DO), are the most significant challenges in SND. Innovative reactor configurations coupled with diversified microbial communities have achieved significant carbon and nitrogen reduction from wastewater. In addition, the review also presents the recent advances in SND for removing micropollutants. The micropollutants are exposed to various enzymes due to the microaerobic and diverse redox conditions present in the SND system, which would eventually enhance biotransformation. This review presents SND as a potential biological treatment process for carbon, nitrogen, and micropollutant removal from wastewater.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology, Delhi, 110016, India.
| |
Collapse
|
3
|
James SN, Vijayanandan A. Anoxic-Aerobic-Anoxic sequencing batch reactor for enhanced nitrogen removal. BIORESOURCE TECHNOLOGY 2022; 363:127892. [PMID: 36070813 DOI: 10.1016/j.biortech.2022.127892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
An anoxic-aerobic-anoxic process was established to achieve simultaneous removal of organic carbon and nitrogen from wastewater in a sequencing batch reactor. The optimum conditions were attained at a DO of 1.5 mg/L with 1 h pre-anoxic and post-anoxic periods. TOC, NH4+-N, and TN removal efficiencies were 98.76 ± 0.95 %, 98.52 ± 0.48 %, and 88.23 ± 0.62 %, respectively, at optimum conditions. Breakpoints in the pH, DO, and ORP curves provided a clear understanding of biochemical reactions happening in the reactor. Inhibition studies showed that 27.69 % of NH4+-N was removed through nitrogen removal pathways such as heterotrophic nitrification or direct conversion, and 20.55 % of TN was removed through aerobic denitrification. Microbial community analysis confirmed the presence of heterotrophic nitrifiers and aerobic denitrifiers. This study highlighted that the varied redox conditions offered by limited aeration would be beneficial for nitrogen removal, thereby reducing the energy usage and operating costs.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
4
|
Di Capua F, Iannacone F, Sabba F, Esposito G. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. BIORESOURCE TECHNOLOGY 2022; 361:127702. [PMID: 35905872 DOI: 10.1016/j.biortech.2022.127702] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous nitrification-denitrification (SND) is an advantageous bioprocess that allows the complete removal of ammonia nitrogen through sequential redox reactions leading to nitrogen gas production. SND can govern nitrogen removal in single-stage biofilm systems, such as the moving bed biofilm reactor and aerobic granular sludge system, as oxygen gradients allow the development of multilayered biofilms including nitrifying and denitrifying bacteria. Environmental and operational conditions can strongly influence SND performance, biofilm development and biochemical pathways. Recent advances have outlined the possibility to reduce the carbon and energy consumption of the process via the "shortcut pathway", and simultaneously remove both N and phosphorus under specific operational conditions, opening new possibilities for wastewater treatment. This work critically reviews the factors influencing SND and its application in biofilm systems from laboratory to full scale. Operational strategies to enhance SND efficiency and hints to reduce nitrous oxide emission and operational costs are provided.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Bari 70125, Italy.
| | | | | | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy
| |
Collapse
|
5
|
Ilmasari D, Sahabudin E, Riyadi FA, Abdullah N, Yuzir A. Future trends and patterns in leachate biological treatment research from a bibliometric perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115594. [PMID: 35759967 DOI: 10.1016/j.jenvman.2022.115594] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Leachate has become a great deal of concern due to its complex properties which are primarily caused by the high concentrations of organics and ammonia. Thus, proper leachate treatment is required prior to its discharge. Leachate can be treated in various ways, and biological treatment is one of the approaches. This treatment has been shown to be both effective and cost-efficient while offering the possibility of resource recovery in the form of bioenergy. In this study, the underlying patterns in publications related to leachate biological treatment were uncovered through bibliometric analysis. This study also lays the groundwork for a deeper understanding of the past, current, and future trends of the leachate biological treatment. Research publications from 1974 to 2021 were retrieved from the Scopus database, and it was identified that 2013 articles were published in the span of 47 years. From the analyzed publications, China played a leading role in publishing leachate biological treatment research articles as well as having the most productive institutions and authors. Meanwhile, the USA was found to be the most active country in initiating international collaborations with 33 countries. The research hotspots were also successfully identified using keyword co-occurrences analysis. Anaerobic digestion and constructed wetland were revealed to be the research hotspots. The critical role of biological treatment in removing nitrogen from leachate was also highlighted. Besides, numerous research gaps were identified in the application of aerobic granular sludge (AGS) for leachate treatment. This can be a potential area for research in the future. Finally, future research should be encouraged to focus on the use of sustainable treatment systems in which energy recovery in the form of biogases is promoted.
Collapse
Affiliation(s)
- Dhaneswara Ilmasari
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Eri Sahabudin
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Fatimah Azizah Riyadi
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Norhayati Abdullah
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; UTM International, Aras 8 Menara Razak, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel. WATER 2021. [DOI: 10.3390/w13182501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the rapid development of urbanization in China, the eutrophication or black stink of urban rivers has become a critical environmental problem. As a research hotspot in wastewater purification, biofilm technology has shortcomings, such as insufficient carbon sources for denitrification. This study used a Biofilm Denitrification Batch Reactor (BDBR) system constructed using reed biochar as the carbon source required in denitrification, significantly accelerating the biofilm formation. To determine the suitable amount of biochar for water purification from the urban eutrophic rivers by the BDBR system, 0%, 5%, 10%, and 15% reed biochar was added to the viscose fiber combined packing. The combined packing reactor involved in this study had a high removal efficiency of the eutrophication channel COD throughout the experiment. However, adding 5% and 10% biochar in the combined filler effectively increased the number of nitrifying and denitrifying bacteria on the biofilm, improved the dominant bacteria diversity and microbial activity, and enhanced denitrification efficiency in the BDBR system. It provides new ideas and methods for developing and applying in situ denitrification technology for urban polluted rivers.
Collapse
|
7
|
Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, Umaru I, Abdurrasheed AS, Adam AA, Ghaleb AAS, Almahbashi NMY, Al-Dhawi BNS, Noor A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111946. [PMID: 33486234 DOI: 10.1016/j.jenvman.2021.111946] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
Collapse
Affiliation(s)
- A H Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - S R M Kutty
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - I M Lawal
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - S Abubakar
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Hassan
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Zubairu
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Umaru
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - A S Abdurrasheed
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - A A Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A A S Ghaleb
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - N M Y Almahbashi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - B N S Al-Dhawi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
8
|
Zhu XL, Bai YH, Wu J, Xu LZJ, Cheng YF, Fan NS, Jin RC. Whether glycine betaine improves the thermotolerance of mesophilic anammox consortia. ENVIRONMENTAL TECHNOLOGY 2020; 41:3309-3317. [PMID: 30999824 DOI: 10.1080/09593330.2019.1606856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
While the application of mesophilic anammox process is currently the state of the art, the feasibility of a thermophilic anammox bioprocess is still unclear. In this study, we investigate whether glycine betaine (GB) addition can enhance the thermotolerance of mesophilic anammox biomass in the upflow anaerobic sludge blanket (UASB) reactors fed with synthetic wastewater at a nitrogen loading of approximately 4 kg N m-3 d-1. The results showed that during a long-term operation at 45°C with GB (0, 0.1, 1, 2 mM) addition, anammox performance became worse with the final effluent concentrations of NO2 -N of 145 ± 11.6 mg L-1 and nitrogen removal efficiency decreased from 92.3-6.9%. Specific anammox activity decreased from 392.1 ± 12.1-6.0 ± 0.8 mg N g-1 VSS d-1, which were not significantly higher than those in the control reactor. The content of heme c showed a stronger downward trend in T1 (with GB addition) than in the control reactor T0. The qPCR results showed that the relative abundance of Candidatus Kuenenia decreased in both the experimental (from 53.5-28.8%) and control reactors (from 54.1-35.1%). Overall, continuous addition of exogenous GB did not improve the thermotolerance of mesophilic anammox consortia at 45°C.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yu-Hui Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Jing Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Lian-Zeng-Ji Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Ya-Fei Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Mielcarek A, Rodziewicz J, Janczukowicz W, Struk-Sokołowska J. The impact of biodegradable carbon sources on nutrients removal in post-denitrification biofilm reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137377. [PMID: 32143032 DOI: 10.1016/j.scitotenv.2020.137377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/28/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Wastewater from households wastewater treatment plants (HWWTP) is discharged to the ground or to the surface waters. Special consideration should be given to the improvement of HWWTP effectiveness, particularly in relation to nutrients. The addition of biodegradable carbon sources to biofilm reactor, can enhance microbial activity but may also lead to filling clogging. The study aimed to compare 3 different organic substrates: acetic acid (commonly applied)and two untypical - citric acid and waste beer, under the same operational conditions in a post-denitrification biofilm reactor. The study investigated the impact of a type of organic substrate, low pH and time on: (1) biofilm growth, (2) the characteristics of extracellular polymeric substances (EPS), (3) the kinetics of nutrients removal and (4) reactor clogging. Results were referred to (5) the effectiveness of nutrients removal. The study demonstrated that low pH assured the development of a thinbiofilm. Citric acid ensured the lowest biomass volume, being by 53% lower than in the reactor with acetic acid and by as much as 61% lower than in the reactor with waste beer. The soluble EPS fraction prevailed in the total EPS in all reactors. The content of the tightly bound EPS fraction ranged from 26.93% (citric acid) to 36.32% (waste beer). Investigations showed also a high ratio of exoproteins to polysaccharide in all fractions, which indicated a significant role of proteins in developing a highly-proliferating biofilm. The treated wastewater met requirements of Polish regulations concerning COD and nitrogen concentrations.
Collapse
Affiliation(s)
- Artur Mielcarek
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Joanna Rodziewicz
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Wojciech Janczukowicz
- University of Warmia and Mazury in Olsztyn, Department of Environment Engineering, Warszawska St. 117a, Olsztyn 10-719, Poland.
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Department of Environmental Engineering Technology, Wiejska St. 45E, Bialystok 15-351, Poland.
| |
Collapse
|
10
|
Asif MB, Ansari AJ, Chen SS, Nghiem LD, Price WE, Hai FI. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34085-34100. [PMID: 30259242 DOI: 10.1007/s11356-018-3256-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
11
|
Hajsardar M, Borghei SM, Hassani AH, Takdastan A. Improving Wastewater Nitrogen Removal and Reducing Effluent NOx - -N by an Oxygen-Limited Process Consisting of a Sequencing Batch Reactor and a Sequencing Batch Biofilm Reactor. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of reactors including a sequencing batch reactor (SBR) and a sequencing batch biofilm reactor (SBBR) were used for nitrogen removal. The aim of this study was simultaneous removal of NH4+-N and NOx–-N from synthetic wastewater. In the novel proposed method, the effluent from SBR was sequentially introduced into SBBR, which contained 0.030 m3 biofilm carriers, so the system operated under a paired sequence of aerobic-anoxic conditions. The effects of different carbon sources and aeration conditions were investigated. A low dissolved oxygen (DO) level in the biofilm depth of the fixed-bed process (SBBR) simulated the anoxic phase conditions. Accordingly, a portion of NH4+-N that was not converted to NO3–-N by the SBR process was converted to NO3–-N in the outer layer of the biofilm in the SBBR process. Further, simultaneous nitrification and denitrification (SND) was achieved in the SBBR where NO2–-N was converted to N2 directly, before NO3–-N conversion (partial nitrification). The level of mixed liquid suspended solids (MLSS) was 2740 mg/l at the start of the experiments. The required carbon source (C: N ratio of 4) was provided by adding an internal carbon source (through step feeding) or ethanol. Firstly, as part of the system (SBR and SBBR), SBR operated at a DO level of 1 mg/l while SBBR operated at a DO concentration of 0.3 mg/l during Run-1. During Run-2, the system operated at the low DO concentration of 0.3 mg/l. When the source of carbon was ethanol, the nitrogen removal rate (RN) was higher than the operation with an internal carbon source. When the reactors were operated at the same DO concentration of 0.3 mg/l, 99.1 % of the ammonium was removed. The NO3–-N produced during the aerobic SBR operation of the novel method was removed in SBBR reactor by 8.3 %. The concentrations of NO3--N and NO2–-N in the SBBR effluent were reduced to 2.5 and 5.5 mg/l, respectively. Also, the total nitrogen (TN) removal efficiency was 97.5 % by adding ethanol at the DO level of 0.3 mg/l.
When C:N adjustment was carried out SND efficiency at C:N ratio of 6.5 reached to 99 %. The increasing nitrogen loading rate (NLR) to 0.554 kg N/m3 d decreased SND efficiency to 80.7 %.
Collapse
|
12
|
Huang W, She Z, Gao M, Wang Q, Jin C, Zhao Y, Guo L. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:859-870. [PMID: 30253368 DOI: 10.1016/j.scitotenv.2018.09.218] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
In this study, the simultaneous partial nitrification and denitrification (SPND) process was investigated in a hybrid sequencing batch biofilm reactor (HSBBR) fed with synthetic wastewater with 1.2% salinity. Different anaerobic/aerobic (An/Ae) durations were selected for evaluating the removal performance of contaminants and the succession of the microbial community in the reactor. The highest organic matter removal efficiency was obtained at An/Ae hour ratio of 0/6.5, with an average chemical oxygen demand (COD) removal of 89.6% at the steady state. Similarly high nitrogen removal efficiencies were achieved at An/Ae hour ratios of 1/5.5, 1.5/5 and 2/4.5,with over 92% of average total nitrogen removed. This represents an increase of more than 10% compared to the mode with An/Ae hour ratio of 0/6.5. High-throughput sequencing analysis revealed that the increase of the An/Ae hour ratio changed the characteristics of the community structures in the HSBBR. Azoarcus was the most dominant genus when the An/Ae hour ratio was 0/6.5 in both suspended sludge (S-sludge) and biofilm, while Candidatus_Competibacter was the most abundant genus at An/Ae hour ratios of 2/4.5 and 3/3.5. Nitrosomonas was the only ammonia oxidizing bacteria (AOB) detected in this study. Nitrospira, a kind of nitrite oxidizing bacteria (NOB), was sensitive to salinity and altering the An/Ae mode; this was detected only in S-sludge samples in a fully aerobic mode with a low percentage of 0.1%. S-sludge and biofilm samples shared a similar bacterial composition. This research demonstrated that efficient nitrogen and carbon removal could be achieved via the SPND process by the symbiotic functional groups in a hybrid S-sludge and biofilm reactor.
Collapse
Affiliation(s)
- Wuyi Huang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Qun Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
13
|
Optimization of Nitrogen Removal in Solid Carbon Source SND for Treatment of Low-Carbon Municipal Wastewater with RSM Method. WATER 2018. [DOI: 10.3390/w10070827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Hui C, Guo X, Sun P, Khan RA, Zhang Q, Liang Y, Zhao YH. Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption. BIORESOURCE TECHNOLOGY 2018; 248:146-152. [PMID: 28756127 DOI: 10.1016/j.biortech.2017.06.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A newly verified adsorbent biofilm produced by Bacillus amyloliquefaciens DT was investigated for nitrite removal from aqueous solutions. The biofilm's characteristics and adsorption mechanism were determined, with results indicating that nitrite ions were adsorbed onto the protonated amine sites of biofilm under acidic conditions. Analysis of various factors showed that higher nitrite adsorption capacities occurred at pH < 3.0 and higher temperatures as well as higher initial nitrite concentrations, with a maximum nitrite removal capacity of 116.84mg/g. Furthermore, nitrite adsorption was well fitted to the pseudo second-order and Weber-Morris kinetic models, and the Freundlich and Sips isotherm models. Simultaneously, thermodynamic analysis demonstrated that nitrite adsorption is a spontaneous endothermic process. In summary, the adsorption of nitrite was complex, and mainly resulted from electrostatic attraction and intraparticle diffusion. Consequently, the B. amyloliquefaciens biofilm can be considered as a promising adsorbent for nitrite removal from wastewater.
Collapse
Affiliation(s)
- Cai Hui
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rashid Azim Khan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Institute of Soil and Water Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Hua Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Derakhshan Z, Ghaneian MT, Mahvi AH, Oliveri Conti G, Faramarzian M, Dehghani M, Ferrante M. A new recycling technique for the waste tires reuse. ENVIRONMENTAL RESEARCH 2017; 158:462-469. [PMID: 28692929 DOI: 10.1016/j.envres.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 12/07/2022]
|
16
|
Xu Y, Chen N, Feng C, Hao C, Peng T. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment. ENVIRONMENTAL TECHNOLOGY 2016; 37:3094-3103. [PMID: 27132648 DOI: 10.1080/09593330.2016.1176077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.
Collapse
Affiliation(s)
- Yaxian Xu
- a School of Water Resources and Environment , China University of Geosciences , Beijing , People's Republic of China
- b Ministry of Education, Key Laboratory of Groundwater Cycle and Environment Evolution , China University of Geosciences , Beijing , People's Republic of China
| | - Nan Chen
- a School of Water Resources and Environment , China University of Geosciences , Beijing , People's Republic of China
- b Ministry of Education, Key Laboratory of Groundwater Cycle and Environment Evolution , China University of Geosciences , Beijing , People's Republic of China
| | - Chuanping Feng
- a School of Water Resources and Environment , China University of Geosciences , Beijing , People's Republic of China
- b Ministry of Education, Key Laboratory of Groundwater Cycle and Environment Evolution , China University of Geosciences , Beijing , People's Republic of China
| | - Chunbo Hao
- b Ministry of Education, Key Laboratory of Groundwater Cycle and Environment Evolution , China University of Geosciences , Beijing , People's Republic of China
| | - Tong Peng
- b Ministry of Education, Key Laboratory of Groundwater Cycle and Environment Evolution , China University of Geosciences , Beijing , People's Republic of China
| |
Collapse
|
17
|
Zhang J, Jia W, Wang R, Ngo HH, Guo W, Xie H, Liang S. Microbial community characteristics during simultaneous nitrification-denitrification process: effect of COD/TP ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2557-2565. [PMID: 26429138 DOI: 10.1007/s11356-015-5496-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
To evaluate the impact of chemical oxygen demand (COD)/total phosphorus (TP) ratio on microbial community characteristics during low-oxygen simultaneous nitrification and denitrification process, three anaerobic-aeration (low-oxygen) sequencing batch reactors, namely R1, R2, and R3, were performed under three different COD/TP ratios of 91.6, 40.8, and 27.6. The community structures of each reactor were analyzed via molecular biological technique. The results showed that the composition of ammonia-oxidizing bacteria (AOB) was affected, indicated by Shannon indexes of the samples from R1, R2, and R3. Nitrosomonas was identified to be the dominant AOB in all SBRs. Moreover, the copy numbers of nitrifiers were more than those of denitrifiers, and the phosphorus-accumulating organisms to glycogen-accumulating organisms ratio increased with the decrease of COD/TP ratio.
Collapse
Affiliation(s)
- Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Wenlin Jia
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rong Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Jinan, 250100, China
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
18
|
Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification–aerobic denitrification. Appl Microbiol Biotechnol 2015; 99:10695-702. [DOI: 10.1007/s00253-015-6870-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
19
|
Intercross real-time control strategy in a novel phased isolation tank step feed process for treating low C/N real wastewater under ambient temperature. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0107-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Shore JL, M'Coy WS, Gunsch CK, Deshusses MA. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. BIORESOURCE TECHNOLOGY 2012; 112:51-60. [PMID: 22444639 DOI: 10.1016/j.biortech.2012.02.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
This study examines the use of a moving bed biofilm reactor (MBBR) as a tertiary treatment step for ammonia removal in high temperature (35-45°C) effluents, and quantifies different phenotypes of ammonia and nitrite oxidizing bacteria responsible for nitrification at elevated temperatures. Bench scale reactors operating at 35 and 40°C were able to successfully remove greater than 90% of the influent ammonia (up to 19 mg L(-1) NH(3)-N) in both the synthetic and industrial wastewater. No biotreatment was observed at 45°C, although effective nitrification was rapidly recovered when the temperature was lowered to 30°C. Using qPCR, Nitrosomonas oligotropha was found to be the dominant ammonia oxidizing bacterium in the biofilm for the first phases of reactor operation. In the later phases, Nitrosomonas nitrosa was observed and its increased presence may have been responsible for improved ammonia treatment efficiency. Accumulation of nitrite in some instances appeared to correlate with temporary low presence of Nitrospira spp.
Collapse
Affiliation(s)
- Jennifer L Shore
- Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
21
|
Jin Y, Ding D, Feng C, Tong S, Suemura T, Zhang F. Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater. BIORESOURCE TECHNOLOGY 2012; 104:12-18. [PMID: 22093972 DOI: 10.1016/j.biortech.2011.08.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/17/2011] [Accepted: 08/21/2011] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate the performances of sequencing batch biofilm reactors (SBBRs) in removing nitrogen and phosphorus from synthetic municipal wastewater with different carbon to total nitrogen (C/N) ratios. The effect of control systems, including an intelligent control system (ICS) and conventional timer control system (TCS) on the performance of SBBRs was also investigated. When C/N ratios were 10.0, 5.0 and 3.3, the average COD removal efficiencies in the ICS-SBBR reached 87.7%, 92.3% and 97.6%, while total phosphorous (TP) removals reached 95.0%, 97.0% and 97.2%. When the C/N ratio was 5.0, the TN removal efficiency was 81.0% under ICS and 65.4% under TCS. Moreover, compared with TCS-SBBR, both reaction time and aeration time were shortened by 180 min and 157 min, respectively, in the ICS-SBBR. Therefore, the ICS-SBBR has potential in practical applications for significant nitrogen and phosphorus removal and energy savings.
Collapse
Affiliation(s)
- Yunxiao Jin
- School of Water Resources and Environment, China University of Geosciences, No. 29 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Lee S, Cho K, Lim J, Kim W, Hwang S. Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population. BIORESOURCE TECHNOLOGY 2011; 102:4196-4203. [PMID: 21196116 DOI: 10.1016/j.biortech.2010.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Activity of ammonia-oxidizing bacteria (AOB) to simultaneous variation in Zn(2+) concentration (0.01-3.5mg/L), temperature (23-33°C), and AOB concentration (3-30 × 10(6)gene copies/mL) in a steel industry wastewater treatment plant was evaluated. Two equations were developed to describe the lag period (i.e., AOB acclimation) and ammonia oxidation rate (i.e., growth of the AOB) depending on the variables. AOB concentration and temperature both had significant effects on lag period and the ammonia oxidation rate. Zn(2+) concentration only had a significant effect on ammonia oxidation rate at 5% α-level. There was a significant interaction between AOB concentration and temperature for both lag period and ammonia oxidation rate. The effects of the variables were not significant when AOB concentration was higher than 2.0 × 10(7)copies/mL. There was no visible shift or changes in AOB communities based on DGGE analysis with amoA gene primers.
Collapse
Affiliation(s)
- Seungyong Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, South Korea
| | | | | | | | | |
Collapse
|
24
|
Rahimi Y, Torabian A, Mehrdadi N, Shahmoradi B. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). JOURNAL OF HAZARDOUS MATERIALS 2011; 185:852-857. [PMID: 20965654 DOI: 10.1016/j.jhazmat.2010.09.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/25/2010] [Accepted: 09/28/2010] [Indexed: 05/30/2023]
Abstract
Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD, TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y(obs)) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio).
Collapse
Affiliation(s)
- Yousef Rahimi
- Department of Civil & Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No 25 Qods St, Enghelab Ave, Tehran, Iran.
| | | | | | | |
Collapse
|