1
|
Yan CX, Zhang Y, Yang WQ, Ma W, Sun XM, Huang H. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms. Biotechnol Adv 2024; 70:108298. [PMID: 38048920 DOI: 10.1016/j.biotechadv.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), are beneficial for reducing blood cholesterol and enhancing memory. Traditional PUFA production relies on extraction from plants and animals, which is unsustainable. Thus, using microorganisms as lipid-producing factories holds promise as an alternative way for PUFA production. Several oleaginous microorganisms have been successfully industrialized to date. These can be divided into universal and specialized hosts according to the products range of biosynthesis. The Yarrowia lipolytica is universal oleaginous host that has been engineered to produce a variety of fatty acids, such as γ-linolenic acid (GLA), EPA, ARA and so on. By contrast, the specialized host are used to produce only certain fatty acids, such as ARA in Mortierella alpina, EPA in Nannochloropsis, and DHA in Thraustochytrids. The metabolic engineering and fermentation strategies for improving PUFA production in universal and specialized hosts are different, which is the subject of this review. In addition, the widely applicable strategies for microbial lipid production that are not specific to individual hosts were also reviewed.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Li YW, Guo Q, Peng QQ, Shen Q, Nie ZK, Ye C, Shi TQ. Recent Development of Advanced Biotechnology in the Oleaginous Fungi for Arachidonic Acid Production. ACS Synth Biol 2022; 11:3163-3173. [PMID: 36221956 DOI: 10.1021/acssynbio.2c00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Arachidonic acid is an essential ω-6 polyunsaturated fatty acid, which plays a significant role in cardiovascular health and neurological development, leading to its wide use in the food and pharmaceutical industries. Traditionally, ARA is obtained from deep-sea fish oil. However, this source is limited by season and is depleting the already threatened global fish stocks. With the rapid development of synthetic biology in recent years, oleaginous fungi have gradually attracted increasing attention as promising microbial sources for large-scale ARA production. Numerous advanced technologies including metabolic engineering, dynamic regulation of fermentation conditions, and multiomics analysis were successfully adapted to increase ARA synthesis. This review summarizes recent advances in the bioengineering of oleaginous fungi for ARA production. Finally, perspectives for future engineering approaches are proposed to further improve the titer yield and productivity of ARA.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Zhi-Kui Nie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,Jiangxi New Reyphon Biochemical Co., Ltd, Salt & Chemical Industry, Xingan, Jiangxi 331399, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China.,College of Food Science and Technology, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, People's Republic of China
| |
Collapse
|
3
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Zhang H, Cui Q, Song X. Research advances on arachidonic acid production by fermentation and genetic modification of Mortierella alpina. World J Microbiol Biotechnol 2021; 37:4. [DOI: 10.1007/s11274-020-02984-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
|
5
|
Two-stage pH control combined with oxygen-enriched air strategies for the highly efficient production of EPA by Mortierella alpina CCFM698 with fed-batch fermentation. Bioprocess Biosyst Eng 2020; 43:1725-1733. [DOI: 10.1007/s00449-020-02367-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
|
6
|
Phytohormones as stimulators to improve arachidonic acid biosynthesis in Mortierella alpina. Enzyme Microb Technol 2019; 131:109381. [DOI: 10.1016/j.enzmictec.2019.109381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
7
|
Shi K, Gao Z, Lin L, Wang WJ, Shi XQ, Yu X, Song P, Ren LJ, Huang H, Ji XJ. Manipulating the generation of reactive oxygen species through intermittent hypoxic stress for enhanced accumulation of arachidonic acid-rich lipids. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Zhang H, Lu D, Li X, Feng Y, Cui Q, Song X. Heavy ion mutagenesis combined with triclosan screening provides a new strategy for improving the arachidonic acid yield in Mortierella alpina. BMC Biotechnol 2018; 18:23. [PMID: 29716562 PMCID: PMC5930740 DOI: 10.1186/s12896-018-0437-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arachidonic acid (ARA), which is a ω-6 polyunsaturated fatty acid, has a wide range of biological activities and is an essential component of cellular membranes in some human tissues. Mortierella alpina is the best strain for industrial production of ARA. To increase its yield of arachidonic acid, heavy ion beam irradiation mutagenesis of Mortierella alpina was carried out in combination with triclosan and octyl gallate treatment. RESULTS The obtained mutant strain F-23 ultimately achieved an ARA yield of 5.26 g L- 1, which is 3.24 times higher than that of the wild-type strain. In addition, quantitative real-time PCR confirmed that the expression levels of fatty acid synthase (FAS), Δ5-desaturase, Δ6-desaturase, and Δ9-desaturase were all significantly up-regulated in the mutant F-23 strain, especially Δ6- and Δ9-desaturase, which were up-regulated 3- and 2-fold, respectively. CONCLUSIONS This study confirmed a feasible mutagenesis breeding strategy for improving ARA production and provided a mutant of Mortierella alpina with high ARA yield.
Collapse
Affiliation(s)
- Huidan Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China. .,Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, 266101, Shandong, China.
| |
Collapse
|
9
|
Yu Y, Zhang L, Li T, Wu N, Jiang L, Ji X, Huang H. How nitrogen sources influence Mortierella alpina aging: From the lipid droplet proteome to the whole-cell proteome and metabolome. J Proteomics 2018; 179:140-149. [DOI: 10.1016/j.jprot.2018.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
10
|
The role of acyl-CoA thioesterase ACOT8I in mediating intracellular lipid metabolism in oleaginous fungus Mortierella alpina. ACTA ACUST UNITED AC 2018; 45:281-291. [DOI: 10.1007/s10295-018-2006-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Abstract
Thioesterases (TEs) play an essential role in the metabolism of fatty acids (FAs). To explore the role of TEs in mediating intracellular lipid metabolism in the oleaginous fungus Mortierella alpina, the acyl-CoA thioesterase ACOT8I was overexpressed. The contents of total fatty acids (TFAs) were the same in the recombinant strains as in the wild-type M. alpina, whilst the production of free fatty acids (FFAs) was enhanced from about 0.9% (wild-type) to 2.8% (recombinant), a roughly threefold increase. Linoleic acid content in FFA form constituted about 9% of the TFAs in the FFA fraction in the recombinant strains but only about 1.3% in the wild-type M. alpina. The gamma-linolenic acid and arachidonic acid contents in FFA form accounted for about 4 and 25%, respectively, of the TFAs in the FFA fraction in the recombinant strains, whilst neither of them in FFA form were detected in the wild-type M. alpina. Overexpression of the TE ACOT8I in the oleaginous fungus M. alpina reinforced the flux from acyl-CoAs to FFAs, improved the production of FFAs and tailored the FA profiles of the lipid species.
Collapse
|
11
|
Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Sun XM, Geng LJ, Ren LJ, Ji XJ, Hao N, Chen KQ, Huang H. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. BIORESOURCE TECHNOLOGY 2018; 250:868-876. [PMID: 29174352 DOI: 10.1016/j.biortech.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/02/2023]
Abstract
As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA.
Collapse
Affiliation(s)
- Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ling-Jun Geng
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ning Hao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ke-Quan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
13
|
Zhang H, Feng Y, Cui Q, Song X. Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpina. BMC Biotechnol 2017; 17:68. [PMID: 28854910 PMCID: PMC5577678 DOI: 10.1186/s12896-017-0388-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arachidonic acid (ARA, C20:4, n-6), which belongs to the omega-6 series of polyunsaturated fatty acids and has a variety of biological activities, is commercially produced in Mortierella alpina. Dissolved oxygen or oxygen utilization efficiency is a critical factor for Mortierella alpina growth and arachidonic acid production in large-scale fermentation. Overexpression of the Vitreoscilla hemoglobin gene is thought to significantly increase the oxygen utilization efficiency of the cells. RESULTS An optimized Vitreoscilla hemoglobin (VHb) gene was introduced into Mortierella alpina via Agrobacterium tumefaciens-mediated transformation. Compared with the parent strain, the VHb-expressing strain, termed VHb-20, grew faster under both limiting and non-limiting oxygen conditions and exhibited dramatic changes in cell morphology. Furthermore, VHb-20 produced 4- and 8-fold higher total lipid and ARA yields than those of the wild-type strain under a microaerobic environment. Furthermore, ARA production of VHb-20 was also 1.6-fold higher than that of the wild type under normal conditions. The results demonstrated that DO utilization was significantly increased by expressing the VHb gene in Mortierella alpina. CONCLUSIONS The expression of VHb enhances ARA and lipid production under both lower and normal dissolved oxygen conditions. This study provides a novel strategy and an engineered strain for the cost-efficient production of ARA.
Collapse
Affiliation(s)
- Huidan Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, Shandong Province 266101 China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong 266101 China
| |
Collapse
|
14
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|
15
|
Wu WJ, Zhang AH, Peng C, Ren LJ, Song P, Yu YD, Huang H, Ji XJ. An efficient multi-stage fermentation strategy for the production of microbial oil rich in arachidonic acid in Mortierella alpina. BIORESOUR BIOPROCESS 2017; 4:8. [PMID: 28163995 PMCID: PMC5243910 DOI: 10.1186/s40643-017-0138-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungal morphology and aeration play a significant role in the growth process of Mortierella alpina. The production of microbial oil rich in arachidonic acid (ARA) in M. alpina was enhanced by using a multi-stage fermentation strategy which combined fed-batch culture with precise control of aeration and agitation rates at proper times. RESULTS The fermentation period was divided into four stages according to the cultivation characteristics of M. alpina. The dissolved oxygen concentration was well suited for ARA biosynthesis. Moreover, the ultimate dry cell weight (DCW), lipid, and ARA yields obtained using this strategy reached 41.4, 22.2, 13.5 g/L, respectively. The respective values represent 14.8, 25.8, and 7.8% improvements over traditional fed-batch fermentation processes. CONCLUSIONS This strategy provides promising control insights for the mass production of ARA-rich oil on an industrial scale. Pellet-like fungal morphology was transformed into rice-shaped particles which were beneficial for oxygen transfer and thus highly suitable for biomass accumulation.
Collapse
Affiliation(s)
- Wen-Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Ai-Hui Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Chao Peng
- Beijing Key Laboratory of Nutrition Health and Food Safety, COFCO Nutrition and Health Research Institute, Beijing, 102209 People’s Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Ya-Dong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
16
|
Morgunov IG, Kamzolova SV, Dedyukhina EG, Chistyakova TI, Lunina JN, Mironov AA, Stepanova NN, Shemshura ON, Vainshtein MB. Application of organic acids for plant protection against phytopathogens. Appl Microbiol Biotechnol 2016; 101:921-932. [PMID: 28040844 DOI: 10.1007/s00253-016-8067-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/23/2022]
Abstract
The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.
Collapse
Affiliation(s)
- Igor G Morgunov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290. .,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290.
| | - Svetlana V Kamzolova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Emilia G Dedyukhina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Tatiana I Chistyakova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Julia N Lunina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Alexey A Mironov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290
| | - Nadezda N Stepanova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290
| | - Olga N Shemshura
- Institute of Microbiology and Virology, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan, 050510
| | - Mikhail B Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region, Russia, 142290.,Pushchino State Institute of Natural Sciences, Pushchino, Russia, 142290
| |
Collapse
|
17
|
Yu Y, Li T, Wu N, Ren L, Jiang L, Ji X, Huang H. Mechanism of Arachidonic Acid Accumulation during Aging in Mortierella alpina: A Large-Scale Label-Free Comparative Proteomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9124-9134. [PMID: 27776414 DOI: 10.1021/acs.jafc.6b03284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arachidonic acid (ARA) is an important polyunsaturated fatty acid having various beneficial physiological effects on the human body. The aging of Mortierella alpina has long been known to significantly improve ARA yield, but the exact mechanism is still elusive. Herein, multiple approaches including large-scale label-free comparative proteomics were employed to systematically investigate the mechanism mentioned above. Upon ultrastructural observation, abnormal mitochondria were found to aggregate around shrunken lipid droplets. Proteomics analysis revealed a total of 171 proteins with significant alterations of expression during aging. Pathway analysis suggested that reactive oxygen species (ROS) were accumulated and stimulated the activation of the malate/pyruvate cycle and isocitrate dehydrogenase, which might provide additional NADPH for ARA synthesis. EC 4.2.1.17-hydratase might be a key player in ARA accumulation during aging. These findings provide a valuable resource for efforts to further improve the ARA content in the oil produced by aging M. alpina.
Collapse
Affiliation(s)
- Yadong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Tao Li
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Na Wu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Ling Jiang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| |
Collapse
|
18
|
Ling XP, Zeng SY, Chen CX, Liu XT, Lu YH. Enhanced arachidonic acid production using a bioreactor culture of Mortierella alpina with a combined organic nitrogen source. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0121-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Finco AMDO, Mamani LDG, Carvalho JCD, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 2016; 37:656-671. [PMID: 27653190 DOI: 10.1080/07388551.2016.1213221] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.
Collapse
Affiliation(s)
- Ana Maria de Oliveira Finco
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Luis Daniel Goyzueta Mamani
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Júlio Cesar de Carvalho
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | | | - Vanete Thomaz-Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| | - Carlos Ricardo Soccol
- a Department of Bioprocess Engineering and Biotechnology , Federal University of Paraná (UFPR) , Curitiba , PR , Brazil
| |
Collapse
|
20
|
CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis. Bioprocess Biosyst Eng 2016; 39:1297-304. [DOI: 10.1007/s00449-016-1608-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
21
|
Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ. Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source. Microb Cell Fact 2015; 14:205. [PMID: 26701302 PMCID: PMC4690419 DOI: 10.1186/s12934-015-0392-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/05/2015] [Indexed: 12/23/2022] Open
Abstract
Background Although some microorganisms can convert glycerol into valuable products such as polyunsaturated fatty acids, the yields are relative low due primarily to an inefficient assimilation of glycerol. Mortierella alpina is an oleaginous fungus which preferentially uses glucose over glycerol as the carbon source for fatty acid synthesis. Results In the present study, we metabolically engineered M. alpina to increase the utilization of glycerol. Glycerol kinase and glycerol-3-phosphate dehydrogenase control the first two steps of glycerol decomposition. GK overexpression increased the total fatty acid content by 35 %, whereas G3PD1, G3PD2 and G3PD3 had no significant effect. Overexpression of malic enzyme (ME1) but not glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase significantly increased fatty acid content when glycerol was used as carbon source. Simultaneous overexpression of GK and ME1 enabled M. alpina to accumulate fatty acids efficiently, with a 44 % increase in fatty acid content (% of dry weight), a 57 % increase in glycerol to fatty acid yield (g/g glycerol) and an 81 % increase in fatty acid production (g/L culture). A repeated batch process was applied to relieve the inhibitory effect of raw glycerol on arachidonic acid synthesis, and under these conditions, the yield reached 52.2 ± 1.9 mg/g. Conclusions This study suggested that GK is a rate-limiting step in glycerol assimilation in M. alpina. Another restricting factor for fatty acid accumulation was the supply of cytosolic NADPH. We reported a bioengineering strategy by improving the upstream assimilation and NADPH supply, for oleaginous fungi to efficiently accumulate fatty acid with glycerol as carbon source. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0392-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangfei Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China.
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China. .,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergistic Innovation Center for Food Safety and Nutrition, Wuxi, 214122, People's Republic of China. .,Departments of Cancer Biology and Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
22
|
Zhang AH, Ji XJ, Wu WJ, Ren LJ, Yu YD, Huang H. Lipid Fraction and Intracellular Metabolite Analysis Reveal the Mechanism of Arachidonic Acid-Rich Oil Accumulation in the Aging Process of Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9812-9819. [PMID: 26482338 DOI: 10.1021/acs.jafc.5b04521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The mechanism of arachidonic acid (ARA) content increase during aging of Mortierella alpina was elucidated. Lipid fraction analysis showed that ARA content increased from 46.9% to 66.4% in the triacylglycerol (TAG) molecule, and ARA residue occupation increased in the majority of TAG molecules during the aging process. For the first time, intracellular metabolite analysis was conducted to reveal the pathways closely associated with ARA biosynthesis during aging. The main reason for the increased ARA content was not only at the expense of other fatty acids degradation but also at the expense of further ARA biosynthesis during aging. Furthermore, translocation played a vital role in ARA redistribution among the glycerol moiety, and mycelium did not die immediately with key pathways activated to maintain a relatively stable intracellular environment. This study lays a foundation for further improvement of ARA content in the oil product obtained from M. alpina.
Collapse
Affiliation(s)
- Ai-Hui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wen-Jia Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ya-Dong Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
23
|
Li X, Liu R, Li J, Chang M, Liu Y, Jin Q, Wang X. Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. BIORESOURCE TECHNOLOGY 2015; 177:134-140. [PMID: 25484124 DOI: 10.1016/j.biortech.2014.11.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
To obtain mutant strains with higher arachidonic acid (ARA) yields, the oleaginous fungus Mortierella alpina was mutated using atmospheric and room temperature plasma (ARTP) coupled with diethyl sulfate (DES). A visual compound filter operation was used in which a screening medium was supplemented with cerulenin, an inhibitor of fatty acid synthase (FAS), and triphenyltetrazolium chloride (TTC). The mutant strain D20 with an ARA production of 5.09 g/L, a 40.61% increase over the original strain (3.62 g/L), was isolated. The relative ARA content increased from 38.99% to 45.64% of total fatty acids. After optimizing fermentation conditions, the maximum ARA yield (6.82 g/L) for strain D20 was obtained in shake flasks. This work provides an appropriate strategy for obtaining high ARA-yield strains by conventional random mutation methods with an efficient screening assay.
Collapse
Affiliation(s)
- Xiangyu Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| |
Collapse
|
24
|
Ji XJ, Zhang AH, Nie ZK, Wu WJ, Ren LJ, Huang H. Efficient arachidonic acid-rich oil production by Mortierella alpina through a repeated fed-batch fermentation strategy. BIORESOURCE TECHNOLOGY 2014; 170:356-360. [PMID: 25151081 DOI: 10.1016/j.biortech.2014.07.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Arachidonic acid (ARA)-rich oil production by Mortierella alpina is a long fermentation period needed process due to the low growth rate of the filamentous fungus used. This causes the low productivity of ARA-rich oil and hinders its industrial mass scale production. In the present study, different fed-batch strategies were conducted to shorten the fermentation period. The result showed that compared with the batch culture, the fermentation period was shortened from 7days to 5days with the productivity of ARA-rich oil increased from 0.9g/(L·d) to 1.3g/(L·d) by using the fed-batch fermentation strategy. Furthermore, repeated fed-batch fermentation strategy was adopted to achieve the purpose of continuous production. By using this strategy, the fermentation period was shortened from 40days to 26days in a four cycle repeated fed-batch fermentation. This strategy proved to be convenient and economical for ARA-rich oil commercial production process.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Ai-Hui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Kui Nie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wen-Jia Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|