1
|
Tang Z, Wang L, Xiong Z, Zhu Y, Zhang H. Process optimized for production of iturin A in biofilm reactor by Bacillus velezensis ND. Bioprocess Biosyst Eng 2024; 47:1095-1105. [PMID: 38847888 DOI: 10.1007/s00449-024-03038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
In this research, to provide an optimal growth medium for the production of iturin A, the concentrations of key amino acid precursors were optimized in shake flask cultures using the response surface method. The optimized medium were applied in a biofilm reactor for batch fermentation, resulting in enhanced production of iturin A. On this basis, a step-wise pH control strategy and a combined step-wise pH and temperature control strategy were introduced to further improve the production of iturin A. Finally, the fed-batch fermentation was performed based on combined step-wise pH and temperature control. The titer and productivity of iturin A reached 7.86 ± 0.23 g/L and 65.50 ± 1.92 mg/L/h, respectively, which were 37.65 and 65.20% higher than that before process optimization.
Collapse
Affiliation(s)
- Zhongmin Tang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China
| | - Leiming Wang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China
| | - Zhengjun Xiong
- Sel Biochem Xinjiang Co., Ltd, Xinjiang, People's Republic of China
| | - Yuxia Zhu
- Sel Biochem Xinjiang Co., Ltd, Xinjiang, People's Republic of China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Kadam V, Dhanorkar M, Patil S, Singh P. Advances in the co-production of biosurfactant and other biomolecules: statistical approaches for process optimization. J Appl Microbiol 2024; 135:lxae025. [PMID: 38308506 DOI: 10.1093/jambio/lxae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
An efficient microbial conversion for simultaneous synthesis of multiple high-value compounds, such as biosurfactants and enzymes, is one of the most promising aspects for an economical bioprocess leading to a marked reduction in production cost. Although biosurfactant and enzyme production separately have been much explored, there are limited reports on the predictions and optimization studies on simultaneous production of biosurfactants and other industrially important enzymes, including lipase, protease, and amylase. Enzymes are suited for an integrated production process with biosurfactants as multiple common industrial processes and applications are catalysed by these molecules. However, the complexity in microbial metabolism complicates the production process. This study details the work done on biosurfactant and enzyme co-production and explores the application and scope of various statistical tools and methodologies in this area of research. The use of advanced computational tools is yet to be explored for the optimization of downstream strategies in the co-production process. Given the complexity of the co-production process and with various new methodologies based on artificial intelligence (AI) being invented, the scope of AI in shaping the biosurfactant-enzyme co-production process is immense and would lead to not only efficient and rapid optimization, but economical extraction of multiple biomolecules as well.
Collapse
Affiliation(s)
- Vaibhav Kadam
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| | - Manikprabhu Dhanorkar
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| | - Shruti Patil
- Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| | - Pooja Singh
- Symbiosis Centre for Waste Resource Management, Symbiosis International (Deemed University), Lavale, Pune-412115, India
| |
Collapse
|
3
|
A Critical Evaluation of Recent Studies on Packed-Bed Bioreactors for Solid-State Fermentation. Processes (Basel) 2023. [DOI: 10.3390/pr11030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Packed-bed bioreactors are often used for aerobic solid-state fermentation, since the forced aeration supplies O2 and removes metabolic heat from the bed. Motivated by the potential for applications in biorefineries, we review studies conducted on packed-bed bioreactors over the last decade, evaluating the insights these studies provide into how large-scale packed beds should be designed and operated. Many studies have used low superficial air velocities and suffer from preferential airflow, such that parts of the bed are not properly aerated. Moreover, some studies have proposed ineffective strategies, such as reversing the direction of the airflow or introducing air through perforated pipes within the bed. Additionally, many studies have used narrow water-jacketed packed-bed bioreactors, but these bioreactors do not reflect heat removal in wide large-scale packed beds, in which heat removal through the side walls makes a minor contribution. Finally, we conclude that, although some attention has been given to characterizing the porosities, water sorption isotherms and volumetric heat and mass transfer coefficients of substrate beds, this work needs to be extended to cover a wider range of solid substrates, and work needs to be done to characterize how these bed properties change due to microbial growth.
Collapse
|
4
|
A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Banat IM, Carboué Q, Saucedo-Castañeda G, de Jesús Cázares-Marinero J. Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology. BIORESOURCE TECHNOLOGY 2021; 320:124222. [PMID: 33171346 DOI: 10.1016/j.biortech.2020.124222] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 05/11/2023]
Abstract
Surfactants are multipurpose products found in most sectors of contemporary industry. Their large-scale manufacturing has been mainly carried out using traditional chemical processes. Some of the chemical species involved in their production are considered hazardous and some industrial processes employing them categorised as "having potential negative impact on the environment". Biological surfactants have therefore been generally accepted worldwide as suitable sustainable greener alternatives. Biosurfactants exhibit the same functionalities of synthetic analogues while having the ability to synergize with other molecules improving performances; this strengthens the possibility of reaching different markets via innovative formulations. Recently, their use was suggested to help combat Covid-19. In this review, an analysis of recent bibliography is presented with descriptions, statistics, classifications, applications, advantages, and challenges; evincing the reasons why biosurfactants can be considered as the chemical specialities of the future. Finally, the uses of the solid-state fermentation as a production technology for biosurfactants is presented.
Collapse
Affiliation(s)
- Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| | - Quentin Carboué
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340 Mexico City, Mexico
| | - Gerardo Saucedo-Castañeda
- Department of Biotechnology, Metropolitan Autonomous University-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340 Mexico City, Mexico
| | | |
Collapse
|
6
|
Rodrigues HCSR, Carvalho AL, Souza CO, Umsza-Guez MA. Evolution of World and Brazilian Markets for Enzymes Produced by Solid-state Fermentation: A Patent Analysis. Recent Pat Biotechnol 2020; 14:112-120. [PMID: 31625481 DOI: 10.2174/1872208313666191017143845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The use of enzymes in various industrial processes has become increasingly frequent. When added to productive processes, it can accelerate reactions and generate a number of new products. The solid state fermentation (SSF), among other applications, has been employed also to obtain enzymes. OBJECTIVE The purpose of this prospection was to map registered patent documents about enzymes production by this type of fermentation in the world, identify the most obtained enzymes with patent documents and compilate information about the world and Brazilian enzyme markets. METHODS The experimental design was carried out by the keyword-driven scope through the advanced search in the Espacenet database European Patent Office (EPO). The keywords selected were solid-state fermentation and the International Patent Classification code, C12N9 (enzymes; proenzymes), for prospecting of interest. RESULTS In 2012, there was the higher number of registered patents (12). China holds 84% of deposited patents. Among the types of depositors, 54% of the selected patent documents were deposited by universities and institutes, and 44% by companies. 76.5% of the evaluated patents used fungi as enzyme producer. Analyzing the enzymes obtained in the registered patents, it is verified that the majority belongs to the group of carbohydrases with 43%, followed by proteases (25%), which are also the two classes of enzymes most commercialized in the market. CONCLUSION China holds the majority of the registered patents but North America gets the largest global enzyme market revenue followed by Europe and Pacific Asia. Carbohydrases were the most commercialized enzymes and with the highest number of patents registered. Among the carbohydrases, cellulases, xylanases and amylases are the most frequent in patent registration while being fungi produced.
Collapse
Affiliation(s)
| | - Andrea L Carvalho
- Technology Department, State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Carolina O Souza
- School of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | | |
Collapse
|
7
|
Simultaneous production of alkaline amylase and biosurfactant by Bacillus methylotrophicus DCS1: application as detergent additive. Biodegradation 2018; 30:247-258. [DOI: 10.1007/s10532-018-9847-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
|
8
|
Arora S, Rani R, Ghosh S. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J Biotechnol 2018; 269:16-34. [PMID: 29408199 DOI: 10.1016/j.jbiotec.2018.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
In recent years, substantial credibility in employing Solid-State Fermentation (SSF) technique has been witnessed owing to its numerous advantages over submerged fermentation (SmF). In spite of enormous advantages, true potential of SSF technology has not been fully realized at industrial scale. The lack of rational and scalable bioreactor designs backed by mathematical models and automated control system that could successfully address heterogeneity with respect to heat and mass, and also operate aseptically, remains the prime reason for it. As a result, there still exists vast scope in SSF bioreactor research and development to facilitate broad spectrum of biotechnological applications. The present article reviews state-of-the-art in SSF technology with focus on bioreactors that have been employed for bioprocess applications, in particular, enzyme production. Based on the mode of operation, bioreactors are divided into four categories with emphasis on design features, effect of operating conditions on productivity, applications and limitations. Selected modeling studies developed over the years, have been revised and presented in problem specific manner in order to address the limitations. Some interesting designs including few recent ones that have been proposed and/or employed at pilot and industrial levels are discussed in more detail.
Collapse
Affiliation(s)
- Sidharth Arora
- Biochemical Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Richa Rani
- Biochemical Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sanjoy Ghosh
- Biochemical Engineering Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
9
|
Rangarajan V, Clarke KG. Process development and intensification for enhanced production ofBacilluslipopeptides. Biotechnol Genet Eng Rev 2016; 31:46-68. [DOI: 10.1080/02648725.2016.1166335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Meng Y, Zhao W, You J, Gang HZ, Liu JF, Yang SZ, Ye RQ, Mu BZ. Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis. Appl Biochem Biotechnol 2016; 179:973-85. [PMID: 27020566 DOI: 10.1007/s12010-016-2044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The lipopeptide and its homologues are a kind of the five major biosurfactants with prominent interfacial and biological activities. A suite of mutagenesis method was adopted to expose a wild lipopeptide-producing strain Bacillus subtilis HSO121 to improve lipopeptide yield, and a stable mutant named R2-104 with a 2.0-fold production of lipopeptide was obtained. Compared to that of the wild strain HSO121, the lipopeptide produced by R2-104 showed a similar surface activity, but the course profiles of lipopeptide production during cultivation were different, with the peak yield of 500 mg at about 9 h by R2-104, and 400 mg at about 5 h by HSO121. The constituent abundance of the lipopeptide homologues produced by R2-104 was also different from that by HSO121. Combined methods of ESI-MS, GC-MS and MS-MS were applied for structural characterization of lipopeptide homologues, and it showed that the lipopeptides produced by R2-104 and HSO121 were attributed to a surfactin family with different constituents. The dominant constituent of the surfactin family produced by R2-104 was anteiso C15-surfactin with a relative content of 43.8 %, while the dominant one produced by HSO121was iso C14-surfactin with a relative content of 33.1 %.
Collapse
Affiliation(s)
- Yong Meng
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jia You
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hong-Ze Gang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ru-Qiang Ye
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
11
|
Solid state fermentation of waste bread pieces by Aspergillus awamori: Analysing the effects of airflow rate on enzyme production in packed bed bioreactors. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|