1
|
Ricks NJ, Brachi M, McFadden K, Jadhav RG, Minteer SD, Hammond MC. Development of Malate Biosensor-Containing Hydrogels and Living Cell-Based Sensors. Int J Mol Sci 2024; 25:11098. [PMID: 39456881 PMCID: PMC11507523 DOI: 10.3390/ijms252011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Malate is a key intermediate in the citric acid cycle, an enzymatic cascade that is central to cellular energy metabolism and that has been applied to make biofuel cells. To enable real-time sensing of malate levels, we have engineered a genetically encoded, protein-based fluorescent biosensor called Malon specifically responsive to malate by performing structure-based mutagenesis of the Cache-binding domain of the Citron GFP-based biosensor. Malon demonstrates high specificity and fluorescence activation in response to malate, and has been applied to monitor enzymatic reactions in vitro. Furthermore, we successfully incorporated Malon into redox polymer hydrogels and bacterial cells, enabling analysis of malate levels in these materials and living systems. These results show the potential for fluorescent biosensors in enzymatic cascade monitoring within biomaterials and present Malon as a novel tool for bioelectronic devices.
Collapse
Affiliation(s)
- Nathan J. Ricks
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Monica Brachi
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Kevin McFadden
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G. Jadhav
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Kummer Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Ming C. Hammond
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Priyadharshini A, Ganesh I, Rangarajalu K, Samuel MS, Ravikumar S. Engineering Whole-Cell Biosensors for Enhanced Detection of Environmental Antibiotics Using a Synthetic Biology Approach. Indian J Microbiol 2024; 64:402-408. [PMID: 39010990 PMCID: PMC11246489 DOI: 10.1007/s12088-024-01259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial Two component systems have evolved with many intricate sensory apparatuses for external stimuli like light, temperature, oxygen, pH and chemical compounds. Recent studies have shown the potential of two-component regulatory systems (TCSs) of bacteria in creating synthetic regulatory circuits for several applications. Antimicrobial resistance is increasing globally in both developing and developed countries and it is one of the foremost global threats to public health. The resistance level to a broad spectrum of antibiotics is rising every year by 5-10%. In this context, TCSs controlling microbial physiology at the transcriptional level could be an appropriate candidate for monitoring the antibiotics present in the environment. This review provided a wide opportunity to gain knowledge about the TCSs available in diverse species to sense the antibiotics. Further, this review explored the EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) based biosensors to repurpose the sensing modules from the microbial TCSs using the synthetic biology approach.
Collapse
Affiliation(s)
- Arunagiri Priyadharshini
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | - Irisappan Ganesh
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | - Kumar Rangarajalu
- Department of Biochemistry, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| | | | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry 607403 India
| |
Collapse
|
3
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
4
|
Wan X, Saltepe B, Yu L, Wang B. Programming living sensors for environment, health and biomanufacturing. Microb Biotechnol 2021; 14:2334-2342. [PMID: 33960658 PMCID: PMC8601174 DOI: 10.1111/1751-7915.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Synthetic biology offers new tools and capabilities of engineering cells with desired functions for example as new biosensing platforms leveraging engineered microbes. In the last two decades, bacterial cells have been programmed to sense and respond to various input cues for versatile purposes including environmental monitoring, disease diagnosis and adaptive biomanufacturing. Despite demonstrated proof-of-concept success in the laboratory, the real-world applications of microbial sensors have been restricted due to certain technical and societal limitations. Yet, most limitations can be addressed by new technological developments in synthetic biology such as circuit design, biocontainment and machine learning. Here, we summarize the latest advances in synthetic biology and discuss how they could accelerate the development, enhance the performance and address the present limitations of microbial sensors to facilitate their use in the field. We view that programmable living sensors are promising sensing platforms to achieve sustainable, affordable and easy-to-use on-site detection in diverse settings.
Collapse
Affiliation(s)
- Xinyi Wan
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Behide Saltepe
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Luyang Yu
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Baojun Wang
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Zhang J, Pang Q, Wang Q, Qi Q, Wang Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Crit Rev Biotechnol 2021; 42:1010-1027. [PMID: 34615431 DOI: 10.1080/07388551.2021.1982858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Genetically encoded biosensors have a diverse range of detectable signals and potential applications in many fields, including metabolism control and high-throughput screening. Their ability to be used in situ with minimal interference to the bioprocess of interest could revolutionize synthetic biology and microbial cell factories. The performance and functions of these biosensors have been extensively studied and have been rapidly improved. We review here current biosensor tuning strategies and attempt to unravel how to obtain ideal biosensor functions through experimental adjustments. Strategies for expanding the biosensor input signals that increases the number of detectable compounds have also been summarized. Finally, different output signals and their practical requirements for biotechnology and biomedical applications and environmental safety concerns have been analyzed. This in-depth review of the responses and regulation mechanisms of genetically encoded biosensors will assist to improve their design and optimization in various application scenarios.
Collapse
Affiliation(s)
- Jian Zhang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingxiao Pang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
6
|
Abstract
Microbially produced indole metabolites serve as a diverse family of interspecies and interkingdom signaling molecules in the context of human health, crop production, and antibiotic resistance. We mined the protein database for sensors of indole metabolites and developed a biosensor for indole-3-aldehyde (I3A). Microbially produced I3A has been associated with reducing inflammation in diseases such as ulcerative colitis by stimulating the aryl hydrocarbon receptor pathway. We engineered an E. coli strain embedded with a single plasmid carrying a chimeric two-component system that detects I3A. Our I3A receptor characterization confirmed binding site residues that contribute to the sensor's I3A detection range of 0.1-10 μM. This new I3A biosensor opens the door to sensing indole metabolites produced at various host-microbe interfaces and provides new parts for synthetic biology applications.
Collapse
Affiliation(s)
- Jiefei Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Chao Zhang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Zhang Y, Li Y, Xiao F, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Engineering of a Biosensor in Response to Malate in Bacillus licheniformis. ACS Synth Biol 2021; 10:1775-1784. [PMID: 34213891 DOI: 10.1021/acssynbio.1c00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malate is an essential intermediate in the tricarboxylic acid (TCA) cycle; it also has valuable uses in medicine and food. The production of malate with a microbial synthesis method is still in its early stages. One of the key problems in metabolic engineering is that the dynamic and subtle changes in malate are difficult to detect. It remains critical to develop techniques with direct and precise detection of malate in microbial metabolism, which facilitates high-throughput screening of the engineered strains. In this study, a genetically encoded biosensor in response to malate was constructed in B. licheniformis. Key regulator MalR and the action site of the biosensor were first identified. Then, the output of the reporter gene expression was amplified by introducing a strong constitutive promoter and iteratively tuning the action sites. The engineered biosensor can respond to malate from 5 to 15 g/L; within this range, it shows a linear correlation between eGFP fluorescence and malate concentration. This biosensor enrich our toolbox of synthetic biology in pathway engineering for malate production in microorganisms.
Collapse
Affiliation(s)
- Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Hanrong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People’s Republic of China
| |
Collapse
|
8
|
Enzyme-based amperometric biosensors for malic acid - A review. Anal Chim Acta 2021; 1156:338218. [PMID: 33781460 DOI: 10.1016/j.aca.2021.338218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Malic acid is a key flavour component of many fruits and vegetables. There is significant interest in technologies for monitoring its concentration, particularly in winemaking. In this review we systematically and comprehensively chart progress in the development of enzyme-based amperometric biosensors for malic acid. We summarise the components and analytical parameters of malic acid sensors that have been reported over the past four decades, discussing their merits and pitfalls in terms of accuracy, sensitivity, linear range, response time and stability. We discuss how advances in electrode materials, electron mediators and the use of coupled enzymes have improved sensitivity and minimised interference, but also uncover a trade-off between sensitivity and linear range. A particular focus of our review is the three types of malate oxidoreductase enzyme that have been used in malic acid biosensors. We describe their different properties and conclude that identifying and/or engineering superior alternatives will be a key future direction for improving the commercial utility of malic acid biosensors.
Collapse
|
9
|
Engineered protein switches for exogenous control of gene expression. Biochem Soc Trans 2020; 48:2205-2212. [DOI: 10.1042/bst20200441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/02/2023]
Abstract
There is an ongoing need in the synthetic biology community for novel ways to regulate gene expression. Protein switches, which sense biological inputs and respond with functional outputs, represent one way to meet this need. Despite the fact that there is already a large pool of transcription factors and signaling proteins available, the pool of existing switches lacks the substrate specificities and activities required for certain applications. Therefore, a large number of techniques have been applied to engineer switches with novel properties. Here we discuss some of these techniques by broadly organizing them into three approaches. We show how novel switches can be created through mutagenesis, domain swapping, or domain insertion. We then briefly discuss their use as biosensors and in complex genetic circuits.
Collapse
|
10
|
Li C, Zhang R, Wang J, Wilson LM, Yan Y. Protein Engineering for Improving and Diversifying Natural Product Biosynthesis. Trends Biotechnol 2020; 38:729-744. [PMID: 31954530 PMCID: PMC7274900 DOI: 10.1016/j.tibtech.2019.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Proteins found in nature have traditionally been the most frequently used biocatalysts to produce numerous natural products ranging from commodity chemicals to pharmaceuticals. Protein engineering has emerged as a powerful biotechnological toolbox in the development of metabolic engineering, particularly for the biosynthesis of natural products. Recently, protein engineering has become a favored method to improve enzymatic activity, increase enzyme stability, and expand product spectra in natural product biosynthesis. This review summarizes recent advances and typical strategies in protein engineering, highlighting the paramount role of protein engineering in improving and diversifying the biosynthesis of natural products. Future prospects and research directions are also discussed.
Collapse
Affiliation(s)
- Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Ruihua Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jian Wang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Lauren Marie Wilson
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Kowallis KA, Duvall SW, Zhao W, Childers WS. Manipulation of Bacterial Signaling Using Engineered Histidine Kinases. Methods Mol Biol 2020; 2077:141-163. [PMID: 31707657 DOI: 10.1007/978-1-4939-9884-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two-component systems allow bacteria to respond to changes in environmental or cytosolic conditions through autophosphorylation of a histidine kinase (HK) and subsequent transfer of the phosphate group to its downstream cognate response regulator (RR). The RR then elicits a cellular response, commonly through regulation of transcription. Engineering two-component system signaling networks provides a strategy to study bacterial signaling mechanisms related to bacterial cell survival, symbiosis, and virulence, and to develop sensory devices in synthetic biology. Here we focus on the principles for engineering the HK to identify unknown signal inputs, test signal transmission mechanisms, design small molecule sensors, and rewire two-component signaling networks.
Collapse
Affiliation(s)
| | - Samuel W Duvall
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA. .,Chevron Science Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Gao C, Xu P, Ye C, Chen X, Liu L. Genetic Circuit-Assisted Smart Microbial Engineering. Trends Microbiol 2019; 27:1011-1024. [PMID: 31421969 DOI: 10.1016/j.tim.2019.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Rapid advances in DNA synthesis, genetic manipulation, and biosensors have greatly improved the ability to engineer microorganisms with complex functions. By accurately integrating quality biosensors and complex genetic circuits, recently emerged smart microorganisms have enabled exciting opportunities for dissecting complex signaling networks and making responses without artificial intervention. However, because of the lack of design principles, developing such smart microorganisms remains challenging. In this review, we propose the concept of smart microbial engineering (SME) and describe the general features of basic SME, including the circuit architecture, components, and design process. We also summarize the latest SME achievements, remaining challenges, and potential solutions in this growing field.
Collapse
Affiliation(s)
- Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0252-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Syst 2018; 7:231-244. [DOI: 10.1016/j.cels.2018.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
|
16
|
In vivo biosensors: mechanisms, development, and applications. ACTA ACUST UNITED AC 2018; 45:491-516. [DOI: 10.1007/s10295-018-2004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 01/09/2023]
Abstract
Abstract
In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.
Collapse
|
17
|
Ravikumar S, David Y, Park SJ, Choi JI. A Chimeric Two-Component Regulatory System-Based Escherichia coli Biosensor Engineered to Detect Glutamate. Appl Biochem Biotechnol 2018; 186:335-349. [DOI: 10.1007/s12010-018-2746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
|
18
|
Heins AL, Weuster-Botz D. Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives. Bioprocess Biosyst Eng 2018. [PMID: 29541890 DOI: 10.1007/s00449-018-1922-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Population heterogeneity is omnipresent in all bioprocesses even in homogenous environments. Its origin, however, is only so well understood that potential strategies like bet-hedging, noise in gene expression and division of labour that lead to population heterogeneity can be derived from experimental studies simulating the dynamics in industrial scale bioprocesses. This review aims at summarizing the current state of the different parts of single cell studies in bioprocesses. This includes setups to visualize different phenotypes of single cells, computational approaches connecting single cell physiology with environmental influence and special cultivation setups like scale-down reactors that have been proven to be useful to simulate large-scale conditions. A step in between investigation of populations and single cells is studying subpopulations with distinct properties that differ from the rest of the population with sub-omics methods which are also presented here. Moreover, the current knowledge about population heterogeneity in bioprocesses is summarized for relevant industrial production hosts and mixed cultures, as they provide the unique opportunity to distribute metabolic burden and optimize production processes in a way that is impossible in traditional monocultures. In the end, approaches to explain the underlying mechanism of population heterogeneity and the evidences found to support each hypothesis are presented. For instance, population heterogeneity serving as a bet-hedging strategy that is used as coordinated action against bioprocess-related stresses while at the same time spreading the risk between individual cells as it ensures the survival of least a part of the population in any environment the cells encounter.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
19
|
Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ. New Intracellular Shikimic Acid Biosensor for Monitoring Shikimate Synthesis in Corynebacterium glutamicum. ACS Synth Biol 2018; 7:591-601. [PMID: 29087704 DOI: 10.1021/acssynbio.7b00339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The quantitative monitoring of intracellular metabolites with in vivo biosensors provides an efficient means of identifying high-yield strains and observing product accumulation in real time. In this study, a shikimic acid (SA) biosensor was constructed from a LysR-type transcriptional regulator (ShiR) of Corynebacterium glutamicum. The SA biosensor specifically responded to the increase of intracellular SA concentration over a linear range of 19.5 ± 3.6 to 120.9 ± 1.2 fmole at the single-cell level. This new SA biosensor was successfully used to (1) monitor the SA production of different C. glutamicum strains; (2) develop a novel result-oriented high-throughput ribosome binding site screening and sorting strategy that was used for engineering high-yield shikimate-producing strains; and (3) engineer a whole-cell biosensor through the coexpression of the SA sensor and a shikimate transporter shiA gene in C. glutamicum RES167. This work demonstrated that a new intracellular SA biosensor is a valuable tool facilitating the fast development of microbial SA producer.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Bo Zhang
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
- Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Yi-Ming Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| | - Ke-Qian Yang
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory
of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Road No.1, 100101 Beijing, PR China
| |
Collapse
|
20
|
Sense and sensitivity in bioprocessing — detecting cellular metabolites with biosensors. Curr Opin Chem Biol 2017; 40:31-36. [DOI: 10.1016/j.cbpa.2017.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 11/23/2022]
|
21
|
Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0484-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Selvamani V, Maruthamuthu MK, Arulsamy K, Eom GT, Hong SH. Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR two-component system from Methylobacterium organophilum XX. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Ravikumar S, Baylon MG, Park SJ, Choi JI. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 2017; 16:62. [PMID: 28410609 PMCID: PMC5391612 DOI: 10.1186/s12934-017-0675-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Two-component regulatory systems (TCRSs) mediate cellular response by coupling sensing and regulatory mechanisms. TCRSs are comprised of a histidine kinase (HK), which serves as a sensor, and a response regulator, which regulates expression of the effector gene after being phosphorylated by HK. Using these attributes, bacterial TCRSs can be engineered to design microbial systems for different applications. This review focuses on the current advances in TCRS-based biosensors and on the design of microbial systems for bioremediation and their potential application in biorefinery.
Collapse
Affiliation(s)
- Sambandam Ravikumar
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Mary Grace Baylon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
24
|
Biofuel metabolic engineering with biosensors. Curr Opin Chem Biol 2016; 35:150-158. [PMID: 27768949 DOI: 10.1016/j.cbpa.2016.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022]
Abstract
Metabolic engineering offers the potential to renewably produce important classes of chemicals, particularly biofuels, at an industrial scale. DNA synthesis and editing techniques can generate large pathway libraries, yet identifying the best variants is slow and cumbersome. Traditionally, analytical methods like chromatography and mass spectrometry have been used to evaluate pathway variants, but such techniques cannot be performed with high throughput. Biosensors - genetically encoded components that actuate a cellular output in response to a change in metabolite concentration - are therefore a promising tool for rapid and high-throughput evaluation of candidate pathway variants. Applying biosensors can also dynamically tune pathways in response to metabolic changes, improving balance and productivity. Here, we describe the major classes of biosensors and briefly highlight recent progress in applying them to biofuel-related metabolic pathway engineering.
Collapse
|
25
|
Ganesh I, Maruthamuthu MK, Hong SH. Engineering a chimeric malate two-component system by introducing a positive feedback loop in Escherichia coli. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-015-0209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Mahr R, Frunzke J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 2015; 100:79-90. [PMID: 26521244 PMCID: PMC4700088 DOI: 10.1007/s00253-015-7090-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
Living organisms have evolved a plethora of sensing systems for the intra- and extracellular detection of small molecules, ions or physical parameters. Several recent studies have demonstrated that these principles can be exploited to devise synthetic regulatory circuits for metabolic engineering strategies. In this context, transcription factors (TFs) controlling microbial physiology at the level of transcription play a major role in biosensor design, since they can be implemented in synthetic circuits controlling gene expression in dependency of, for example, small molecule production. Here, we review recent progress on the utilization of TF-based biosensors in microbial biotechnology highlighting different areas of application. Recent advances in metabolic engineering reveal TF-based sensors to be versatile tools for strain and enzyme development using high-throughput (HT) screening strategies and adaptive laboratory evolution, the optimization of heterologous pathways via the implementation of dynamic control circuits and for the monitoring of single-cell productivity in live cell imaging studies. These examples underline the immense potential of TF-based biosensor circuits but also identify limitations and room for further optimization.
Collapse
Affiliation(s)
- Regina Mahr
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
27
|
Liu D, Evans T, Zhang F. Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 2015; 31:35-43. [DOI: 10.1016/j.ymben.2015.06.008] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
|