1
|
Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, Hou S, Gui L. Integrating 16S rRNA Sequencing and LC-MS-Based Metabolomics to Evaluate the Effects of Dietary Crude Protein on Ruminal Morphology, Fermentation Parameter and Digestive Enzyme Activity in Tibetan Sheep. Animals (Basel) 2024; 14:2149. [PMID: 39123675 PMCID: PMC11310993 DOI: 10.3390/ani14152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Z.W.); (F.Z.); (Q.S.); (Q.J.); (K.Z.); (Y.Z.); (S.H.)
| |
Collapse
|
2
|
Li H, Chen J, Li X, Gan J, Liu H, Jian Z, Xu S, Zhang A, Li G, Chen K. Artificial neural network and genetic algorithm coupled fermentation kinetics to regulate L-lysine fermentation. BIORESOURCE TECHNOLOGY 2024; 393:130151. [PMID: 38049019 DOI: 10.1016/j.biortech.2023.130151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Fermentation plays a pivotal role in the industrialization of bioproducts, yet there is a substantial lag in the fermentation process regulation. Here, an artificial neural network (ANN) and genetic algorithm (GA) coupled with fermentation kinetics were employed to establish an innovative lysine fermentation control. Firstly, the strategy of coupling GA with ANN was established. Secondly, specific lysine formation rate (qp), specific substrate consumption rate (qs), and specific cell growth rate (μ) were predicted and optimized by ANN-GA. The optimal ANN model adopts a three-layer feed-forward back-propagation structure (4:10:1). The optimal fermentation control parameters are obtained through GA. Finally, when the carbon to nitrogen ratio, residual sugar concentration, ammonia nitrogen concentration, and dissolved oxygen were [2.5, 4.5], [6.5, 9.5] g·L-1, [1.0, 2.0] g·L-1 and [20, 30] %, respectively, the lysine concentration reaches its peak at 213.0 ± 5.10 g·L-1. The novel control strategy holds significant potential for optimizing the fermentation of other bioproducts.
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiajun Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xingyan Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Gan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huazong Liu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhou Jian
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Sheng Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Alei Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
3
|
Fan S, Zheng M, Ren A, Mao H, Long D, Yang L. Effects of High-Concentrate-Induced SARA on Antioxidant Capacity, Immune Levels and Rumen Microbiota and Function in Goats. Animals (Basel) 2024; 14:263. [PMID: 38254432 PMCID: PMC10812789 DOI: 10.3390/ani14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
This study aims to explore the antioxidant, immune, and enzyme metabolism aspects in goats experiencing subacute ruminal acidosis (SARA). Furthermore, we seek to elucidate the relationship between the symbiotic microbiota of goats and their metabolic function. Sixteen goats were equally divided into two groups and fed a normal-concentrate diet (NC, 55% concentrate) or a high-concentrate diet (HC, 90% concentrate) for five weeks. We found that the HC diet reduced the total antioxidant capacity (T-AOC) (p = 0.022) and increased interleukin-1β (IL-1β) (p = 0.015), interleukin-4 (IL-4) (p = 0.008) and interleukin-6 (IL-6) (p = 0.002) concentration of goats. Simultaneously, the HC diet significantly increased the concentrations of alkaline phosphatase (ALP) and amylase (AMY) in the blood and rumen fluid of goats (p < 0.05). Microbial analysis in the rumen of goats revealed that the HC diet decreased bacterial richness and diversity, as evidenced by the changed observed species, Chao 1, PD whole tree and Shannon when compared to the NC diet (p < 0.01). The proportion of Proteobacteria increased while that of Spirochaetes and Fibrobacteres significantly decreased with the HC diet (p < 0.05). The Christensenellaceae_R-7_group and Ruminococcaceae_UCG-010 in rumen was notably decreased when a diet was switched from 55% concentrate diet to 90% concentrate diet (p < 0.05). Additionally, microbial functional potentials deduced that the HC diet significantly increased the abundance of the citrate cycle (TCA cycle) (ko00020) associated with carbohydrate metabolism (p = 0.028). Furthermore, the HC diet significantly increased the glutathione metabolism (ko00480) associated with the metabolism of other amino acids (p = 0.008). Our findings suggested that SARA reduced the total antioxidant capacity and increased levels of inflammatory factors in goats, as well as decreased rumen bacterial species and abundance.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (S.F.); (D.L.)
| |
Collapse
|
4
|
Li S, Mao Y, Zhang L, Wang M, Meng J, Liu X, Bai Y, Guo Y. Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:65. [PMID: 35710433 PMCID: PMC9205021 DOI: 10.1186/s13068-022-02166-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The naturally occurring homo-polyamide biopolymer, ε-poly-L-lysine (ε-PL) consists of 25-35 L-lysine residues with amide linkages between α-carboxyl groups and ε-amino groups. ɛ-PL exhibits several useful properties because of its unusual structure, such as biodegradability, water solubility, no human toxicity, and broad-spectrum antibacterial activities; it is widely applied in the fields of food, medicine, clinical chemistry and electronics. However, current industrial production of ε-PL is only performed in a few countries. Based on an analysis of the physiological characteristics of ε-PL fermentation, current advances that enhance ε-PL fermentation, from strain improvement to product isolation are systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulatory mechanism of ε-PL synthesis; (2) enhancing biosynthetic performance through mutagenesis, fermentation optimization and metabolic engineering; and (3) understanding and improving the biological activity and functional properties of ε-PL. Finally, perspectives on engineering and exploiting ε-PL as a source material for the production of various advanced materials are also discussed, providing scientific guidelines for researchers to further improve the ε-PL fermentation process.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunren Mao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lifei Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jinhao Meng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yunxia Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004, China.
| |
Collapse
|
5
|
Efficient ε-poly-L-lysine production by Streptomyces albulus based on a dynamic pH-regulation strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front Bioeng Biotechnol 2021; 9:748976. [PMID: 34650962 PMCID: PMC8506220 DOI: 10.3389/fbioe.2021.748976] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chongyang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianhua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Wu Y, Kang Q, Zhang LL, Bai L. Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules 2020; 10:biom10060851. [PMID: 32503302 PMCID: PMC7356834 DOI: 10.3390/biom10060851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes.
Collapse
Affiliation(s)
- Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Li Zhang
- College of Life Science, Tarim University, Alar 843300, China;
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Tarim University, Alar 843300, China;
- Correspondence:
| |
Collapse
|
8
|
Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. ACTA ACUST UNITED AC 2019; 46:1781-1792. [DOI: 10.1007/s10295-019-02240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Abstract
ε-Poly-l-lysine (ε-PL) is a natural food preservative, which exhibits antimicrobial activity against a wide spectra of microorganisms. The production of ε-PL was significantly enhanced by pH shock in our previous study, but the underlying mechanism is poorly understood. According to transcriptional and physiological analyses in this study, the mprA/B and pepD signal transduction system was first proved to be presented and activated in Streptomyces albulus M-Z18 by pH shock, which positively regulated the transcription of ε-PL synthetase (Pls) gene and enhanced the Pls activity during fermentation. Furthermore, pH shock changed the ratio of unsaturation to saturation fatty acid in the membrane through up-regulating the transcription of fatty acid desaturase genes (SAZ_RS14940, SAZ_RS14945). In addition, pH shock also enhanced the transcription of cytochrome c oxidase (SAZ_RS15070, SAZ_RS15075), ferredoxin reductase (SAZ_RS34975) and iron sulfur protein (SAZ_RS31410) genes, and finally resulted in the improvement of cell respiratory activity. As a result, pH shock was considered to influence a wide range of proteins including regulators, fatty acid desaturase, respiratory chain component, and ATP-binding cassette transporter during fermentation. These combined influences might contribute to enhanced ε-PL productivity with pH shock.
Collapse
|
9
|
Mechanisms of response to pH shock in microbial fermentation. Bioprocess Biosyst Eng 2019; 43:361-372. [PMID: 31650352 DOI: 10.1007/s00449-019-02232-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
Abstract
The following review highlights pH shock, a novel environmental factor, as a tool for the improvement of fermentation production. The aim of this review is to introduce some recent original studies on the enhancement of microbial fermentation production by pH shock. Another purpose of this review is to improve the understanding of the processes that underlie physiological and genetic differences, which will facilitate future research on the improvement of fermentation production and reveal the associated molecular mechanisms. This understanding will simultaneously promote the application of this strategy to other microbial fermentation systems. Furthermore, improvement of the cellular tolerance of genetically engineered bacteria can also be a new field of research in the future to enhance fermentation production.
Collapse
|
10
|
Pan L, Chen X, Wang K, Mao Z. A temporal transcriptomic dynamics study reveals the reason of enhanced ε-poly-L-lysine production in Streptomyces albulus M-Z18 by pH shock. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Zeng X, Miao W, Wen B, Mao Z, Zhu M, Chen X. Transcriptional study of the enhanced ε-poly-L-lysine productivity in culture using glucose and glycerol as a mixed carbon source. Bioprocess Biosyst Eng 2019; 42:555-566. [PMID: 30637513 DOI: 10.1007/s00449-018-2058-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
Abstract
A glucose-glycerol mixed carbon source (MCS) can substantially reduce batch fermentation time and improve ε-poly-L-lysine (ε-PL) productivity, which was of great significance in industrial microbial fermentation. This study aims to disclose the physiological mechanism by transcriptome analyses. In the MCS, the enhancements of gene transcription mainly emerged in central carbon metabolism, L-lysine synthesis as well as cell respiration, and these results were subsequently proved by quantitative real-time PCR assay. Intracellular L-lysine determination and exhaust gas analysis further confirmed the huge precursor L-lysine pool and active cell respiration in the MCS. Interestingly, in the MCS, pls was remarkably up-regulated than those in single carbon sources without transcriptional improvement of HrdD, which indicated that the improved ε-PL productivity was supported by other regulators rather than hrdD. This study exposed the physiological basis of the improved ε-PL productivity in the MCS, which provided references for studies on other biochemicals production using multiple substrates.
Collapse
Affiliation(s)
- Xin Zeng
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Wenyun Miao
- Family Planning Service Center, Rizhao Maternal and Child Care Service Hospital, Rizhao, 276826, China
| | - Beibei Wen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
12
|
Jiang J, Sun YF, Tang X, He CN, Shao YL, Tang YJ, Zhou WW. Alkaline pH shock enhanced production of validamycin A in fermentation of Streptomyces hygroscopicus. BIORESOURCE TECHNOLOGY 2018; 249:234-240. [PMID: 29045927 DOI: 10.1016/j.biortech.2017.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Validamycin A (Val-A) is produced by Streptomyces as a secondary metabolite with wide agricultural applications of controlling rice sheath blight, false smut and damping-off diseases. The effect of alkaline pH shock on enhancing Val-A production and its mechanism were investigated. A higher yield of Val-A was achieved by NaOH shock once or several times together with faster protein synthesis and sugar consumption and alkaline pH shock can increase Val-A production by 27.43%. Transcription of genes related to amino acid metabolism, carbon metabolism and electron respiratory chain was significantly up-regulated, accompanied by the substantial increase of respiratory activity and glutamate concentration. Val-A production was promoted by a series of complex mechanisms and made a response to pH stress signal, which led to the enhancement of glutamate metabolism and respiration activity. The obtained information will facilitate future studies for antibiotic yield improvement and the deep revealment of molecular mechanism.
Collapse
Affiliation(s)
- Jing Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ya-Fang Sun
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao-Nan He
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ye-Lin Shao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
13
|
Lv J, Qian GF, Chen L, Liu H, Xu HX, Xu GR, Zhang BB, Zhang C. Efficient Biosynthesis of Natural Yellow Pigments by Monascus purpureus in a Novel Integrated Fermentation System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:918-925. [PMID: 29313328 DOI: 10.1021/acs.jafc.7b05783] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because of the increasing demand for healthy and safe food, Monascus spp. have gained much attention as a sustainable source of natural food colorant. In this study, a novel integrated fermentation system consisting of surfactant and in situ extractant was established for efficiently producing yellow pigments by M. purpureus sjs-6. The maximum production of Monascus yellow pigment (669.2 U/mL) was obtained when 40% soybean oil (as extractant) was supplied at the beginning and 5 g/L Span-80 (as surfactant) was supplied at the 72nd h, which resulted in production 27.8-times of that of the control. Critical factors such as alleviating the product inhibition, increasing the membrane permeability, changing the hyphal morphology, and influencing the cell activity have been suggested as the underlying mechanisms. This system is of great significance for the bioprocess, which suffers product inhibition, and it can serve as a promising step for enhancing the yield of hydrophobic metabolites.
Collapse
Affiliation(s)
- Jun Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Gao-Fei Qian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Huan Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Hai-Xiao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Gan-Rong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Bo-Bo Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| | - Chan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology and ‡School of Food science and Technology, Jiangnan University , Wuxi 214122, China
- Beijing Engineering and Technology Research Center of Food Additives and ⊥Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, China
| |
Collapse
|
14
|
Enhanced ε-poly-L-lysine production by inducing double antibiotic-resistant mutations in Streptomyces albulus. Bioprocess Biosyst Eng 2016; 40:271-283. [PMID: 27807681 DOI: 10.1007/s00449-016-1695-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
ε-Poly-L-lysine (ε-PL), as a food additive, has been widely used in many countries. However, its production still needs to be improved. We successfully enhanced ε-PL production of Streptomyces albulus FEEL-1 by introducing mutations related to antibiotics, such as streptomycin, gentamicin, and rifampin. Single- and double-resistant mutants (S-88 and SG-31) were finally screened with the improved ε-PL productions of 2.81 and 3.83 g/L, 1.75- to 2.39-fold compared with that of initial strain FEEL-1. Then, the performances of mutants S-88 and SG-31 were compared with the parent strain FEEL-1 in a 5-L bioreactor under the optimal condition for ε-PL production. After 174-h fed-batch fermentation, the ε-PL production and productivity of hyper-strain SG-31 reached the maximum of 59.50 g/L and 8.21 g/L/day, respectively, which was 138 and 105% higher than that of FEEL-1. Analysis of streptomycin-resistant mutants demonstrated that a point mutation occurred in rpsL gene (encoding the ribosomal protein S12). These single and double mutants displayed remarkable increases of the activities and transcriptional levels of key enzymes in ε-PL biosynthesis pathway, which may be responsible for the enhanced mycelia viability, respiratory activity, and ε-PL productions of SG-31. These results showed that the new breeding method, called ribosome engineering, could be a novel and effective breeding strategy for the evolution of ε-PL-producing strains.
Collapse
|