Zou X, Xu K, Xue Y, Qu Y, Li Y. Removal of harmful algal blooms in freshwater by buoyant-bead flotation using chitosan-coated fly ash cenospheres.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020;
27:29239-29247. [PMID:
32440871 DOI:
10.1007/s11356-020-09293-z]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) are a growing problem worldwide, damaging human and ecosystem health. In this study, a novel buoyant-bead flotation (BBF) method using chitosan-coated fly ash cenospheres (CFACs) was developed to remove HABs in freshwater. To achieve a high removal efficiency of harmful algae (Chlorella vulgaris, Scenedesmus quadricauda, and Microcystis aeruginosa), this study investigated the effects of chitosan/fly ash ratios in CFAC composite, CFAC concentration, flotation time, and pH values on the microalgae removal. The optimized ratio of CFACs is 0.1:12, and the optimized CFAC concentration is 0.3-0.7 g L-1. However, the lower or higher ratios (0.1:4, 0.1:8, 0.1:16) result in microalgae reaching a zero-point charge too late or early, which failed to effectively remove HABs with an appropriate coal fly ash dosage. An optimized removal efficiency of 98.50% for Microcystis aeruginosa was reached at pH of 6.0. The optimized efficiency of Scenedesmus quadricauda and Chlorella vulgaris was 99.37% and 91.63%, respectively, at pH of 8.0. At neutral pH conditions, the surface charge of microalgae cells and CFACs are different, promoting aggregate formation. When CFACs were used to remove microalgae, aggregate size significantly influenced removal efficiency. Meanwhile, at the optimized pH and concentration, the removal efficiency of all three algal species exceeded 90.00% in 5 min. The study highlights an efficient and inexpensive method for removing HABs and obtains the optimized operational conditions.
Collapse