1
|
Canini D, Martini F, Cazzaniga S, Miotti T, Pacenza B, D'Adamo S, Ballottari M. Genetic engineering of Nannochloropsis oceanica to produce canthaxanthin and ketocarotenoids. Microb Cell Fact 2024; 23:322. [PMID: 39609835 PMCID: PMC11606307 DOI: 10.1186/s12934-024-02599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Canthaxanthin is a ketocarotenoid with high antioxidant activity, and it is primarily produced by microalgae, among which Nannochloropsis oceanica, a marine alga widely used for aquaculture. In the last decade, N. oceanica has become a model organism for oleaginous microalgae to develop sustainable processes to produce biomolecules of interest by exploiting its photosynthetic activity and carbon assimilation properties. N. oceanica can accumulate lipids up to 70% of total dry weight and contains the omega-3 fatty acid eicosapentaenoic acid (EPA) required for both food and feed applications. The genome sequence, other omics data, and synthetic biology tools are available for this species, including an engineered strain called LP-tdTomato, which allows homologous recombination to insert the heterologous genes in a highly transcribed locus in the nucleolus region. Here, N. oceanica was engineered to induce high ketocarotenoid and canthaxanthin production. RESULTS We used N. oceanica LP-tdTomato strain as a background to express the key enzyme for ketocarotenoid production, a β-carotene ketolase (CrBKT) from Chlamydomonas reinhardtii. Through the LP-tdTomato strain, the transgene insertion by homologous recombination in a highly transcribed genomic locus can be screened by negative fluorescence. The overexpression of CrBKT in bkt transformants increased the content of carotenoids and ketocarotenoids per cell, respectively, 1.5 and 10-fold, inducing an orange/red color in the bkt cell cultures. Background (LP) and bkt lines productivity were compared at different light intensities from 150 to 1200 µmol m-2 s-1: at lower irradiances, the growth kinetics of bkt lines were slower compared to LP, while higher productivity was measured for bkt lines at 1200 µmol m-2 s-1. Despite these results, the highest canthaxanthin and ketocarotenoids productivity were obtained upon cultivation at 150 µmol m-2 s-1. CONCLUSIONS Through targeted gene redesign and heterologous transformation, ketocarotenoids and canthaxanthin content were significantly increased, achieving 0.3% and 0.2% dry weight. Canthaxanthin could be produced using CO2 as the only carbon source at 1.5 mg/L titer. These bkt-engineered lines hold potential for industrial applications in fish or poultry feed sectors, where canthaxanthin and ketocarotenoids are required as pigmentation agents.
Collapse
Affiliation(s)
- Davide Canini
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Flavio Martini
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Tea Miotti
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Beatrice Pacenza
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Sarah D'Adamo
- Bioprocess Engineering Chair Group, Wageningen University and Research, Wageningen, 6700 AA, The Netherlands
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università Degli Studi di Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
2
|
Santurbano V, Marangon B, Castro J, Calijuri ML, Leme M, Assemany P. Enhancing environmental performance in biogas production from wastewater-grown microalgae: A life cycle assessment perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121251. [PMID: 38823295 DOI: 10.1016/j.jenvman.2024.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/31/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The production of biogas from microalgae has gained attention due to their rapid growth, CO2 sequestration, and minimal land use. This study uses life cycle assessment to assess the environmental impacts of biogas production from wastewater-grown microalgae through anaerobic digestion within an optimized microalgae-based system. Using SimaPro® 9 software, 3 scenarios were modeled considering the ReCiPe v1.13 midpoint and endpoint methods for environmental impact assessment in different categories. In the baseline scenario (S1), a hypothetical system for biogas production was considered, consisting of a high rate algal pond (HRAP), a settling, an anaerobic digester, and a biogas upgrading unit. The second scenario (S2) included strategies to enhance biogas yield, namely co-digestion and thermal pre-treatment. The third scenario (S3), besides considering the strategies of S2, proposed the biogas upgrading in the HRAP and the digestate recovery as a biofertilizer. After normalization, human carcinogenic toxicity was the most positively affected category due to water use in the cultivation step, accounted as avoided product. However, this category was also the most negatively affected by the impacts of the digester heating energy. Anaerobic digestion was the most impactful step, constituting on average 60.37% of total impacts. Scenario S3 performed better environmentally, primarily due to the integration of biogas upgrading within the cultivation reactor and digestate use as a biofertilizer. Sensitivity analysis highlighted methane yield's importance, showing potential for an 11.28% reduction in ionizing radiation impacts with a 10% increase. Comparing S3 biogas with natural gas, the resource scarcity impact was reduced sixfold, but the human health impact was 23 times higher in S3.
Collapse
Affiliation(s)
- Victor Santurbano
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Post-Graduate Program in Environmental Engineering, Campus Universitário, 37203-202, Lavras, MG, Brazil.
| | - Bianca Marangon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Post-Graduate Program in Civil Engineering, Department of Civil Engineering, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Jackeline Castro
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Post-Graduate Program in Civil Engineering, Department of Civil Engineering, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Post-Graduate Program in Civil Engineering, Department of Civil Engineering, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Márcio Leme
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Post-Graduate Program in Environmental Engineering, Campus Universitário, 37203-202, Lavras, MG, Brazil
| | - Paula Assemany
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Post-Graduate Program in Environmental Engineering, Campus Universitário, 37203-202, Lavras, MG, Brazil
| |
Collapse
|
3
|
Bhatt A, Sahu N, Dada AC, Kumar Prajapati S, Arora P. Assessing sustainability of microalgae-based wastewater treatment: Environmental considerations and impacts on human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120435. [PMID: 38402790 DOI: 10.1016/j.jenvman.2024.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
An integrated life cycle assessment (LCA) and quantitative microbial risk assessment (QMRA) were conducted to assess microalgae-mediated wastewater disinfection (M-WWD). M-WWD was achieved by replacing ultraviolet disinfection with a microalgal open raceway pond in an existing sewage treatment plant (STP) in India. Regarding impacts on human health, both M-WWD and STP yielded comparable life cycle impacts, around 0.01 disability-adjusted life years (DALYs) per person per year. However, QMRA impacts for M-WWD (0.053 DALYs per person per year) were slightly lower than that for STP while considering exposure to E. coli O157:H7 and adenovirus. Additionally, a comparative LCA resolved the dilemma about the appropriate utilization of microalgal biomass. Among biodiesel, biocrude, and biogas production, the lowest impacts of 0.015 DALYs per person per year were obtained for biocrude for 1 m3 water treated by M-WWD. Electricity consumption in microalgae cultivation was a major environmental hotspot. Overall, M-WWD, followed by production of microalgal biocrude, emerged as a sustainable alternative from environmental and public health perspectives. These findings set the foundation for pilot-scale M-WWD system development, testing, and economic evaluation. Such comprehensive investigations, encompassing LCA, QMRA, and resource recovery scenarios, offer crucial insights for stakeholders and decision-makers in wastewater treatment and environmental management.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Nitin Sahu
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
4
|
Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116538-116566. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.
Collapse
Affiliation(s)
- Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Janhvi Pandey
- Division of Agronomy and Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gordon W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
5
|
Pechsiri JS, Thomas JBE, Bahraoui NE, Fernandez FGA, Chaouki J, Chidami S, Tinoco RR, Martin JP, Gomez C, Combe M, Gröndahl F. Comparative life cycle assessment of conventional and novel microalgae production systems and environmental impact mitigation in urban-industrial symbiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158445. [PMID: 36058335 DOI: 10.1016/j.scitotenv.2022.158445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/26/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The versatility of microalgae biomass as candidates for various products and bioremediation needs motivates interests towards design and implementation of novel microalgae bioreactors. Conventional open-reactors are reliant on large quantities of sunlight and space while yields are constrained by outdoor environment conditions. Conversely, closed-reactor systems like bubble columns reduces these constrains on microalgae growth while occupying far less space at the expense of high energy demands, notably from lighting systems. A novel patented closed reactor design has recently been proposed that improves the bubble column concept with an efficient and effective lighting system. The present study uses Life Cycle Assessment approach to compare the environmental performance of conventional reactors and the proposed internally luminated novel closed reactor design, expressing impacts per kg biostimulant for the Scenedesmus almeriensis harvest from such units. All performance data was collected from a pilot facility in Almeria, Spain. Urban-industrial symbiosis scenarios are also portrayed in the study using wastewater and incinerator flue gas. Results show that under synthetic nutrient and carbon inputs in Spanish pilot operations, the cumulative energy demand for the novel photobioreactors is similar to conventional vertically-stacked horizon bioreactors but are substantially more demanding than conventional open reactors. However, when leveraging renewable energy sources and the photosynthesis process to consume wastestreams in urban-industrial symbiosis scenarios, the novel photobioreactor was able to achieve up to 80 % improvements in several impact categories e.g. eutrophication and climate change. Impact mitigation credits per kg dwt biomass across all energy scenarios in symbiosis amount to ≈1.8 kg CO2eq and ≈0.09 kg PO4 eq. This highlights that such closed and internally illuminated photobioreactors can be competitive with conventional reactors, and have potential to harness photosynthesis to reduce environmental burdens in an urban-industrial symbiosis setting. Possible economies of scale and the associated potential gains in efficiencies are further discussed.
Collapse
Affiliation(s)
- Joseph Santhi Pechsiri
- Water and Environmental Engineering, Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology KTH, Teknikringen 10b, 114 28 Stockholm, Sweden.
| | - Jean-Baptiste E Thomas
- Water and Environmental Engineering, Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology KTH, Teknikringen 10b, 114 28 Stockholm, Sweden.
| | - Naoufel El Bahraoui
- Center for Energy Efficiency and Systems, Mines ParisTech, 60 Bd Saint-Michel, 75272 Paris, France; Setec Energie Environnement, 42-52 Quai de la Rapée, 75012 Paris, France
| | | | - Jamal Chaouki
- Polytechnique Montréal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada.
| | - Saad Chidami
- Polytechnique Montréal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - Rodrigo Rivera Tinoco
- Center for Energy Efficiency and Systems, Mines ParisTech, 60 Bd Saint-Michel, 75272 Paris, France
| | - Jose Pena Martin
- Department of Chemical Engineering, University of Almeria, Cañda San Urbano s/N, 04120 Almeria, Spain
| | - Cintia Gomez
- Department of Chemical Engineering, University of Almeria, Cañda San Urbano s/N, 04120 Almeria, Spain
| | - Michel Combe
- Setec Energie Environnement, 42-52 Quai de la Rapée, 75012 Paris, France.
| | - Fredrik Gröndahl
- Water and Environmental Engineering, Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology KTH, Teknikringen 10b, 114 28 Stockholm, Sweden.
| |
Collapse
|
6
|
Neuner T, Meister M, Pillei M, Koch M, Rauch W. Numerical and experimental flow investigation using ultrasonic PIV for optimizing mechanically agitated lab-scale anaerobic digesters. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
On the effect of the inlet configuration for anaerobic digester mixing. Bioprocess Biosyst Eng 2021; 44:2455-2468. [PMID: 34291344 PMCID: PMC8536570 DOI: 10.1007/s00449-021-02617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/17/2021] [Indexed: 10/26/2022]
Abstract
Sludge recirculation mixing in anaerobic digesters is essential for the stable operation of the digestion process. While often neglected, the configuration of the sludge inlet has a substantial influence on the efficiency of the mixing process. The fluid is either injected directly into the enclosed fluid domain or splashes onto the free surface of the slurry flow. In this paper, the aim was to investigate the effect of the inlet configuration by means of computational fluid dynamics-using ANSYS Fluent. Single-phase and multi-phase models are applied for a submerged and splashing inlet, respectively. To reduce the high computational demand, we also develop surrogate single-phase models for the splashing inlet. The digester mixing is analyzed by comparing velocity contours, velocity profiles, mixing time and dead volume. The non-Newtonian characteristics of the sludge is considered, and a [Formula: see text] model is employed for obtaining turbulence closure. Our method is validated by means of a previous study on the same geometry. Applying a submerged inlet configuration, the resulting dead volume in the tank is estimated around 80 times lower than for the case of a splashing inlet. Additionally, by emulating the multi-phase model for splashing inlet configurations with a single-phase one, the simulation clock time reduced to 15%.
Collapse
|
8
|
Marangon BB, Calijuri ML, Castro JDS, Assemany PP. A life cycle assessment of energy recovery using briquette from wastewater grown microalgae biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112171. [PMID: 33609975 DOI: 10.1016/j.jenvman.2021.112171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/07/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae biomass (MB) is a promising source of renewable energy, especially when the cultivation is associated with wastewater treatment. However, microalgae wastewater technologies still have much to improve. Additionally, microalgae biomass valorization routes need to be optimized to be a sustainable and feasible source of green bioenergy. Thus, this paper aimed to evaluate the environmental impacts of the production of briquettes from MB, cultivated during domestic wastewater treatment. Also, it was evaluated how much the drying of the MB affected the life cycle and the environment. Improvements in the life cycle to mitigate the environmental impacts of this energy route were proposed. Cradle-to-gate modeling was applied to obtain a life cycle assessment (LCA) from cultivation to the valorization of MB, through its transformation into a solid biofuel. With LCA, it was possible to identify which technical aspect of the process needs to be optimized so that environmental sustainability can be achieved. Two scenarios were compared, one with the microalgae growth in a high-rate algal pond (HRAP) (scenario 1) and the other in a hybrid reactor, formed by a HRAP and a biofilm reactor (BR) (scenario 2). LCA highlighted the electric power mix, representing, on average, 60% of the total environmental impacts in both scenarios. The valorization of MB in briquettes needs to consume less energy to offset its yield. The environment suffered pressure in freshwater eutrophication, due to the release of 3.1E-05 and 3.9E-05 kg of phosphorus equivalent; in fossil resources scarcity, with the extraction of 1.4E-02 and 4.5E-02 kg of oil equivalent; and in climate change, by the emission of 1.0E-01 and 1.9E-01 kg of carbon dioxide (CO2) equivalent, in scenarios 1 and 2, respectively. Scenario 1 was highly damaging to terrestrial ecotoxicity, with the release of 3.5E-01 kg of 1,4 Dichlorobenzene, coming from the CO2 used in MB growth. This category was the one that most negatively pressured the environment, differing from scenario 2, in which this input was not required. This was the only impact category in which scenario 2 had a better environmental performance when compared to scenario 1. Cotton, required in scenario 2, represented up to 87% of emissions in some of the evaluated categories. Despite the impacts that occurred in the two modeled scenarios, the environmental gains due to the use of wastewater for microalgae growth, replacing the synthetic cultivation medium, stood out. In the sensitivity analysis, two alternative scenarios were proposed: (i) electricity consumption for drying has been reduced, due to the natural decrease of MB humidity, and (ii) MB briquettes were considered a substitute for coal briquettes. Results indicated that pressures on climate change and fossil resource scarcity were eliminated in both scenarios and this also occurred for freshwater eutrophication in scenario 2. This paper contributes to the improvement and development of converting MB routes into more sustainable products, causing less pressure on the environment. Also, the study contributes to filling a gap in the literature, discussing methods and technologies to be improved, and consequently making microalgae biotechnology environmentally feasible and a potential renewable energy alternative.
Collapse
Affiliation(s)
- Bianca Barros Marangon
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Jackeline de Siqueira Castro
- Department of Civil Engineering, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Paula Peixoto Assemany
- Department of Environmental Engineering, Federal University of Lavras, Campus Universitario, 37200-000, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Choudhary P, Assemany PP, Naaz F, Bhattacharya A, Castro JDS, Couto EDADC, Calijuri ML, Pant KK, Malik A. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:137961. [PMID: 32334349 DOI: 10.1016/j.scitotenv.2020.137961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Microalgae are recognized as a potential source of biomass for obtaining bioenergy. However, the lack of studies towards economic viability and environmental sustainability of the entire production chain limits its large-scale application. The use of wastewaters economizes natural resources used for algal biomass cultivation. However, desirable biomass characteristics for a good fuel may be impaired when wastewaters are used, namely low lipid content and high ash and protein contents. Thus, the choice of wastewaters with more favorable characteristics may be one way of obtaining a more balanced macromolecular composition of the algal biomass and therefore, a more suitable feedstock for the desired energetic route. The exploration of biorefinery concept and the use of wastewaters as culture medium are considered as the main strategic tools in the search of this viability. Considering the economics of overall process, direct utilization of wet biomass using hydrothermal liquefaction or hydrothermal carbonization and anaerobic digestion is recommended. Among the explored routes, anaerobic digestion is the most studied process. However, some main challenges remain as little explored, such as a low energy pretreatment and suitable and large-scale reactors for algal biomass digestion. On the other hand, thermochemical conversion routes offer better valorization of the algal biomass but have higher costs. A biorefinery combining anaerobic digestion, hydrothermal carbonization and hydrothermal liquefaction processes would provide the maximum possible output from the biomass depending on its characteristics. Therefore, the choice must be made in an integrated way, aiming at optimizing the quality of the final product to be obtained. Life cycle assessment studies are critical for scaling up of any algal biomass valorization technique for sustainability. Although there are limitations, suitable integrations of these processes would enable to make an economically feasible process which require further study.
Collapse
Affiliation(s)
- Poonam Choudhary
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Paula Peixoto Assemany
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Farah Naaz
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Arghya Bhattacharya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Jackeline de Siqueira Castro
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Eduardo de Aguiar do Couto Couto
- Universidade Federal de Itajubá/Itabira campus, Instituto de Ciências Puras e Aplicadas, Rua Irmã Ivone Drummond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, IIT Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India.
| |
Collapse
|
10
|
Covell L, Machado M, Vaz MGMV, Soares J, Batista AD, Araújo WL, Martins MA, Nunes-Nesi A. Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BR003. Bioprocess Biosyst Eng 2020; 43:1123-1131. [PMID: 32020445 DOI: 10.1007/s00449-020-02301-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Nitrogen (N) sources have been target in microalgae cultivation studies, considering their nutritional impact on growth and high costs. Here, we have evaluated the growth of Scenedesmus obliquus BR003, applying alternative low-cost culture media containing ammonium and urea, or combinations of both N sources. The culture media were applied for indoor and outdoor cultivation, followed by growth analyses and metabolic characterization. The alternative culture media B4 and L4 supported higher biomass production (1.4 g L-1) compared to BG11 (nitrate-based medium). In addition, the lipid percentage was higher for B4 (ammonium-based culture medium), reaching up to 25% DW. High contents of carbohydrates (60%) and proteins (40%) were also obtained in media with ammonium and urea, respectively. Considering the lower costs of alternative fertilizer-based media, using ammonium and/or urea as N sources, and the high lipid content observed, we suggest these media as viable for large-scale production of S. obliquus.
Collapse
Affiliation(s)
- Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Mariana Machado
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | | | - Jimmy Soares
- Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Aline Duarte Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Marcio Arêdes Martins
- Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|