1
|
Abdel-Fatah SS, Mohammad NH, Elshimy R, Mosallam FM. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb Cell Fact 2024; 23:240. [PMID: 39238019 PMCID: PMC11378559 DOI: 10.1186/s12934-024-02508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nasser H Mohammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rana Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Microbiology and immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
2
|
Hou S, Xia Z, Pan J, Wang N, Gao H, Ren J, Xia X. Bacterial Cellulose Applied in Wound Dressing Materials: Production and Functional Modification - A Review. Macromol Biosci 2024; 24:e2300333. [PMID: 37750477 DOI: 10.1002/mabi.202300333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.
Collapse
Affiliation(s)
- Shuaiwen Hou
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hanchao Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingli Ren
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
3
|
Sankar Santhosh A, Umesh M, Kariyadan S, Suresh S, Salmen SH, Ali Alharb S, Shanmugam S. Fabrication of biopolymeric sheets using cellulose extracted from water hyacinth and its application studies for reactive red dye removal. ENVIRONMENTAL RESEARCH 2024; 240:117466. [PMID: 37866534 DOI: 10.1016/j.envres.2023.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Driven by the imperative need for sustainable and biodegradable materials, this study focuses on two pivotal aspects: cellulose extraction and dye removal. The alarming repercussions of non-biodegradable food packaging materials on health and the environment necessitate the exploration of viable alternatives. Herein, we embark on creating easily degradable biopolymer substitutes, achieved through innovative crafting of a biodegradable cellulose sheet sourced from extracted cellulose. Concurrently, the significant environmental and health hazards posed by textile industry discharge of wastewater laden with persistent dyes demand innovative treatment strategies. This study extensively investigated four distinct methods of cellulose extraction from water hyacinth, a complex aquatic weed. The functional groups, crystallinity index, thermal stability, thermal effects, and morphology of the extracted cellulose were characterized by FTIR, XRD, TGA, DSC, and SEM. This exploration yielded a notable outcome, as the most promising yield (39.4 ± 0.02% w/w) emerged using 2% sodium chlorite and 2% glacial acetic acid as bleaching agents, surpassing other methods. Building on this foundational cellulose extraction process, the extracted fibers were transformed into highly biodegradable cellulose sheets, outlining conventional packaging materials. Moreover, these cellulose sheets exhibit exceptional efficacy in adsorbing reactive red dye, with the adsorption capacity of 71.43 mg/g by following pseudo-second kinetics. This study establishes an economically viable avenue for repurposing challenging aquatic weeds into commercially valuable biopolymers. The potential of these sheets for dye removal, coupled with their innate biodegradability, opens auspicious avenues for broader applications encompassing commercial wastewater treatment procedures.
Collapse
Affiliation(s)
- Adhithya Sankar Santhosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India.
| | - Sapthami Kariyadan
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharb
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, 51006, Estonia.
| |
Collapse
|
4
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
El Shall FN, Al-Shemy MT, Dawwam GE. Multifunction smart nanocomposite film for food packaging based on carboxymethyl cellulose/Kombucha SCOBY/pomegranate anthocyanin pigment. Int J Biol Macromol 2023:125101. [PMID: 37245764 DOI: 10.1016/j.ijbiomac.2023.125101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Active packing systems employed to preserve food quality have gone through chains of sustainable development processes, reflecting the growth in consumer awareness of high-quality foods in eco-friendly packaging. Consequently, this study aims to develop antioxidant, antimicrobial, UV-shielding, pH-sensitive, edible, and flexible films from composites of carboxymethyl cellulose (CMC), pomegranate anthocyanin extract (PAE), and various fractions (1-15 %) of bacterial cellulose from the Kombucha SCOBY (BC Kombucha). Various analytical tools such as ATR-FTIR, XRD, TGA, and TEM were utilized to investigate the physicochemical characterization of BC Kombucha and CMC-PAE/BC Kombucha films. The DDPH scavenging test demonstrated the efficiency of PAE as a matrix with potent antioxidant properties, both as a solution and enclosed in composite films. The fabricated films of CMC-PAE/BC Kombucha showed antimicrobial activities against many pathogenic Gram-negative (Pseudomonas aeruginosa, Salmonella sp., and Escherichia coli), Gram-positive (Listeria monocytogenes and Staphylococcus aureus) bacteria, and Candida albicans, ranging from a 20 to 30 mm inhibition zone. The CMC-PAE/BC Kombucha nanocomposite has additionally been utilized to pack red grapes and plums. The results illustrated that CMC-PAE/BC Kombucha nanocomposite can increase red grapes and plums' shelf lives by up to 25 days while maintaining the fruits' quality better than those left unpacked.
Collapse
Affiliation(s)
- Fatma N El Shall
- Dyeing, Printing and Textile Auxiliary Department, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St), P.O. 12622, Dokki, Giza, Egypt.
| | - Mona T Al-Shemy
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St), P.O. 12622, Dokki, Giza, Egypt.
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt.
| |
Collapse
|
6
|
Kamaraj C, Ragavendran C, Manimaran K, Sarvesh S, Islam ARMT, Malafaia G. Green synthesis of silver nanoparticles from Cassia Auriculata: Targeting antibacterial, antioxidant activity, and evaluation of their possible effects on saltwater microcrustacean, Artemia Nauplii (non-target organism). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160575. [PMID: 36462660 DOI: 10.1016/j.scitotenv.2022.160575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Due to their huge surface area to volume ratio, metallic nanoparticles are becoming increasingly important in numerous spheres of life. Here, initially, we aimed to evaluate the potential use of Cassia auriculata (CA) extract to synthesize silver nanoparticles (AgNPs). Then, we evaluated its antimicrobial potential and antioxidant capacity, as well as performed in silico analysis, and investigated the possible non-toxic effect of AgNPs on Artemia nauplii. Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies were used to characterize the biosynthesized AgNPs. Our data indicate that Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus bacteria were susceptible to the biosynthesized AgNPs, whose effect was concentration-response. With a ZOI of 10 mm, the AgNPs were most efficient against gram-positive B. cereus bacteria at the highest concentration (75 μg/mL). The biosynthesized AgNPs (at 25 to 125 μg/mL) showed good antioxidant activity in the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and FRAP (ferric reducing antioxidant power) assays. Oleanolic acid from CA exhibited strong binding affinity and high binding energy to E. coli and B. cereus (-9.66 and - 9.74 kcal/mol) on in silico research. According to the comparative non-toxicity analysis, AgNPs, AgNO3, and CA bark extract had the least toxic effects on A. nauplii, with respective mortality rates of 28.14, 32.26, and 38.42 %, respectively. In conclusion, the current work showed that AgNPs produced from CA bark could be a promising material for diverse applications.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India.
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Kumar Manimaran
- Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Naddu, India
| | - Sabarathinam Sarvesh
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | | | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Zeng A, Yang R, Tong Y, Zhao W. Functional bacterial cellulose nanofibrils with silver nanoparticles and its antibacterial application. Int J Biol Macromol 2023; 235:123739. [PMID: 36806768 DOI: 10.1016/j.ijbiomac.2023.123739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Bacterial cellulose (BC) with good biocompatibility and superior mechanical properties has broad applications. BC functionalized with silver nanoparticles (AgNPs) has been assessed as an antimicrobial membrane for wound-healing treatment. During the AgNPs synthesis, avoiding the use of toxic chemicals is very necessary for the development of environmentally friendly procedures. Herein, a Komagataeibacter xylinus-based direct biosynthetic method to fabricate D-Saccharic acid potassium salt (SA)-grafted BC (SABC) through in situ bacterial metabolism was firstly explored. Subsequently, the SABC pellicles were immersed in AgNO3 solution for ion-exchanged process, and the silver nanoparticles (AgNPs) with diameter of ∼25.2 nm were in situ synthesized on SABC nanofiber surfaces by thermal reduction instead of using a reducing agent. The morphology and microstructure of SABC/AgNPs pellicles were analyzed by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectra. Moreover, antibacterial activity measurement performed against the Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) by disk diffusion and plate count methods, showed high-efficiency bacteria-killing performance of SABC/AgNPs pellicles. This work proposed a new method by using microbial metabolism to prepare BC pellicles with functional groups, and antimicrobial films containing AgNPs was prepared by thermal reduction, exhibiting valuable prospects in wound healing treatment.
Collapse
Affiliation(s)
- Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Construction of antibacterial nano-silver embedded bioactive hydrogel to repair infectious skin defects. Biomater Res 2022; 26:36. [PMID: 35879746 PMCID: PMC9310474 DOI: 10.1186/s40824-022-00281-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background Hydrogels loaded with antimicrobial agents have been widely used for treating infected wound defects. However, hydrogels derived from a porcine dermal extracellular matrix (PADM), containing silver nanoparticles (AgNPs), have not yet been studied. Therefore, we investigated the therapeutic effect of an AgNP-impregnated PADM (AgNP–PADM) hydrogel on the treatment of infected wounds. Methods An AgNP–PADM hydrogel was synthesized by embedding AgNPs into a PADM hydrogel. We examined the porosity, moisture retention, degradation, antibacterial properties, cytotoxicity, antioxidant properties, and ability of the PADM and AgNP–PADM hydrogels to treat infected wounds in animals. Results The PADM and AgNP–PADM hydrogels were pH sensitive, which made them flow dynamically and solidify under acidic and neutral conditions, respectively. The hydrogels also exhibited porous network structures, satisfactory moisture retention, and slow degradation. Additionally, the AgNP–PADM hydrogel showed a slow and sustained release of AgNPs for at least 7 days without the particle size changing. Thus, the AgNPs exhibited adequate antibacterial ability, negligible toxicity, and antioxidant properties in vitro. Moreover, the AgNP–PADM hydrogel promoted angiogenesis and healed infected skin defects in vivo. Conclusions The AgNP–PADM hydrogel is a promising bioderived antibacterial material for clinical application to infected wound dressings.
Collapse
|