1
|
Wang J, Du M, Wang X, He J, Zhang A, Chen K. Highly efficient bio-production of putrescine from L-arginine with arginase and L-ornithine decarboxylase in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 413:131471. [PMID: 39260727 DOI: 10.1016/j.biortech.2024.131471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
To achieve industrial-scale putrescine production, a high efficient bio-synthesis of putrescine involving arginase (ARG, EC 3.5.3.1) and L-ornithine decarboxylase was evaluated here. Among the four arginases tested, ARGBT from Bos Taurus showed the highest activity (1966 U/mg). Compared to the L-arginine decarboxylase (ADC) pathway, the strain expressing ARGBT and L-ornithine decarboxylase (SpeC) produced 28.7 g/L putrescine, a 38.6 % increase. Two pyridoxal phosphate (PLP) salvage pathways were evaluated, and the strain BL-PTac-PdxK co-expressed pyridoxal kinase (PdxK) performed better. D-Glucose was used as the co-substrate to improve the putrescine titer further. Under optimal conditions, 43.6 g/L putrescine was produced from 87.1 g/L L-arginine, and 76 g/L putrescine was synthesized on a 0.5 L scale. Using L-arginine fermentation broth (60 g/L) as the substrate, a titer of 30 g/L putrescine was achieved. This efficient biotransformation process presented here enables feasible industrial-scale putrescine production.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Min Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Junchen He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Y, Gao J, Li Q, Yang J, Gao Y, Xue J, Li L, Ji Y. Biosurfactant production by Bacillus cereus GX7 utilizing organic waste and its application in the remediation of hydrocarbon-contaminated environments. World J Microbiol Biotechnol 2024; 40:334. [PMID: 39358641 DOI: 10.1007/s11274-024-04115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/17/2024] [Indexed: 10/04/2024]
Abstract
The use of biosurfactants represents a promising technology for remediating hydrocarbon pollution in the environment. This study evaluated a highly effective biosurfactant strain-Bacillus cereus GX7's ability to produce biosurfactants from industrial and agriculture organic wastes. Bacillus cereus GX7 showed poor utilization capacity for oil soluble organic waste but effectively utilized of water- soluble organic wastes such as starch hydrolysate and wheat bran juice as carbon sources to enhance biosurfactant production. This led to significant improvements in surface tension and emulsification index. Corn steep liquor was also effective as a nitrogen source for Bacillus cereus GX7 in biosurfactant production. The biosurfactants produced by strain Bacillus cereus GX7 demonstrated a remediation effect on oily beach sand, but are slightly inferior to chemical surfactants. Inoculation with Bacillus cereus GX7 (70.36%) or its fermentation solution (94.38%) effectively enhanced the degradation efficiency of diesel oil in polluted seawater, surpassing that of indigenous degrading bacteria treatments (57.62%). Moreover, inoculation with Bacillus cereus GX7's fermentation solution notably improved the community structure by increasing the abundance of functional bacteria such as Pseudomonas and Stenotrophomonas in seawater. These findings suggest that the Bacillus cereus GX7 as a promising candidate for bioremediation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Yunyun Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
| | - Jin Gao
- Weifang City Ecological Environmental Protection Comprehensive Law Enforcement Detachment, Weifang, 261000, China
| | - Qintong Li
- College of Engineering, Shibaura Institute of Technology, Tokyo, 1358548, Japan
| | - Jingjing Yang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
| | - Yu Gao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Jianliang Xue
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Lin Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Huangdao District, Qingdao, 266590, Shandong, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Yiting Ji
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
3
|
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol 2023; 14:1304081. [PMID: 38075889 PMCID: PMC10703385 DOI: 10.3389/fmicb.2023.1304081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024] Open
Abstract
Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.
Collapse
Affiliation(s)
- Amin Kassem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Lana Abbas
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Oliver Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Somie Opara
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Hawraa Najaf
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Diana Kasperek
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Sonia Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| |
Collapse
|
4
|
Nguyen Vo Chau N, Huynh Van T, Nguyen Cong T, Kim L, Pham DV. Water lettuce ( Pistia stratiotes L.) increases biogas effluent pollutant removal efficacy and proves a positive substrate for renewable energy production. PeerJ 2023; 11:e15879. [PMID: 37637175 PMCID: PMC10452623 DOI: 10.7717/peerj.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023] Open
Abstract
Background Aquatic plants play a crucial role in nature-based wastewater treatment and provide a promising substrate for renewable energy production using anaerobic digestion (AD) technology. This study aimed to examine the contaminant removal from AD effluent by water lettuce (WL) and produce biogas from WL biomass co-digested with pig dung (PD) in a farm-scale biogas digester. Methods The first experiment used styrofoam boxes containing husbandry AD effluent. WLs were initially arranged in 50%, 25%, 12.5%, and 0% surface coverage. Each treatment was conducted in five replicates under natural conditions. In the second experiment, WL biomass was co-digested with PD into an existing anaerobic digester to examine biogas production on a farm scale. Results Over 30 days, the treatment efficiency of TSS, BOD5, COD, TKN, and TP in the effluent was 93.75-97.66%, 76.63-82.56%, 76.78-82.89%, 61.75-63.75%, and 89.00-89.57%, respectively. Higher WL coverage increased the pollutant elimination potential. The WL biomass doubled after 12 days for all treatments. In the farm-scale biogas production, the biogas yield varied between 190.6 and 292.9 L kg VSadded-1. The methane content reached over 54%. Conclusions WL removed AD effluent nutrients effectively through a phytoremediation system and generated significant biomass for renewable energy production in a farm-scale model.
Collapse
Affiliation(s)
| | - Thao Huynh Van
- Department of Environmental Sciences, Can Tho University, Can Tho City, Vietnam
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Thuan Nguyen Cong
- Department of Environmental Sciences, Can Tho University, Can Tho City, Vietnam
| | - Lavane Kim
- Department of Environmental Engineering, Can Tho University, Can Tho City, Vietnam
| | - Dan Van Pham
- Center for Technology Development and Agricultural Extension, Vietnam Academy of Agricultural Sciences, Ha Noi, Vietnam
| |
Collapse
|
5
|
Eser A, Aydemir T. Immobilization of Subtilisin Carlsberg and its use for transesterification of N-acetyl-L-phenylalanine ethyl ester in organic medium. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02887-0. [PMID: 37269356 DOI: 10.1007/s00449-023-02887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
In this study, inorganic-based carrier perlite (PER) and cyclodextrin-modified perlite (PER-CD) were used for Subtilisin Carlsberg (SC) immobilization. For enzyme immobilization, the supports aminated with 3-aminotriethoxysilane were first activated with glutaraldehyde (GA) and genipin (GE), and then, the immobilized enzymes (PER-SC and PER-CD-SC) were obtained. The reaction medium for SC immobilization consisted of 500 mg carrier and 5 ml (1 mg/ml) enzyme solution. The immobilization conditions were pH 8.0, 25 °C, and 2 h incubation time. Free and immobilized SC were used for transesterification of N-acetyl-L-phenylalanine ethyl ester (APEE) with 1-propanol in tetrahydrofuran (THF). The transesterification activity of the enzyme and the yield of the transesterification reaction were determined by gas chromatography (GC). 50 mg of immobilized or 2.5 mg of free SC was added to the reaction medium, which was prepared as 1 mmol APEE and 10 mmol alcohol in 10 mL of THF. The conditions for the transesterification reaction were 60 °C and 24 h of incubation. The structure and surface morphology of the prepared carriers were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Casein substrate was used in the optimization study. The optimum temperature and pH for SC activity were found to be 50 °C and pH 8.0, respectively, for free and immobilized SC. The thermal stability of immobilized SC was found to be greater than that of free SC. At the end of 4 h of exposure to high temperature, the immobilized enzyme maintained its activity at approximately 50%, while the free enzyme was maintained at approximately 20%. However, modification with cyclodextrin did not alter the thermal stability. The transesterification yield was found to be approximately 55% for the free enzyme, while it was found to be approximately 68% and 77% for PER-SC and PER-CD-SC, respectively. The effect of metal ions and salts on transesterification yield was examined. The results showed that the addition of metal ions decreased the percentage of transesterification by approximately 10% compared to the control group, whereas the addition of salt significantly decreased the percentage of transesterification by 60-80% compared to the control group.
Collapse
Affiliation(s)
- Ahmet Eser
- Department of Chemistry, Faculty of Arts and Sciences, Manisa Celal Bayar University, 45140, Manisa, Turkey.
| | - Tülin Aydemir
- Department of Chemistry, Faculty of Arts and Sciences, Manisa Celal Bayar University, 45140, Manisa, Turkey
| |
Collapse
|
6
|
Hadibarata T, Kristanti RA, Bilal M, Yilmaz M, Sathishkumar P. Biodegradation mechanism of chlorpyrifos by halophilic bacterium Hortaea sp. B15. CHEMOSPHERE 2023; 312:137260. [PMID: 36400190 DOI: 10.1016/j.chemosphere.2022.137260] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
For decades, most of the developing nations have relied on chlorpyrifos for insecticidal activity in the agriculture sector. It is a common chlorinated organophosphorus pesticide that has been widely used to control insects to protect plants. This study aimed to investigate the effects of environmental characteristics such as salinity, pH, temperature, and surfactant on Hortaea sp. B15 mediated degradation of chlorpyrifos as well as enzyme activity and metabolic pathway. The highest bacterial growth (4.6 × 1016 CFU/mL) was achieved after 20 h of incubation in a 100 mg/L chlorpyrifos amended culture. The fit model and feasible way to express the chlorpyrifos biodegradation kinetics in normal condition and optimized was a first-order rate equation, with an R2 value of 0.95-0.98. The optimum pH for chlorpyrifos biodegradation was pH 9, which resulted in a high removal rate (91.1%) and a maximum total count of 3.8 × 1016 CFU/mL. Increasing the temperature over 40 °C may inhibit microbial development and biodegradation. There was no significant effect of culture salinity on degradation and bacterial growth. In the presence of non-ionic surfactant Tween 80, the maximum chlorpyrifos degradation (89.5%) and bacterial growth (3.8 × 1016 CFU/mL) was achieved. Metabolites such as 3,5,6-trichloropyridin-2-ol and 2-pyridinol were identified in the Hortaea sp. B15 mediated degradation of chlorpyrifos. According to the findings, Hortaea sp. B15 should be recommended for use in the investigation of in situ biodegradation of pesticides.
Collapse
Affiliation(s)
- Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, CDT 250, Miri, Sarawak, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency of Indonesia, Jalan Pasir Putih 1, Jakarta, 14430, Indonesia
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Murat Yilmaz
- Department of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkiye
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| |
Collapse
|
7
|
Zhang Q, Xing W, Wang Q, Tang Z, Wang Y, Gao W. Gut microbiota-mitochondrial inter-talk in non-alcoholic fatty liver disease. Front Nutr 2022; 9:934113. [PMID: 36204383 PMCID: PMC9530335 DOI: 10.3389/fnut.2022.934113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD), which is a progressive disease, has exerted huge a healthcare burden worldwide. New investigations have suggested that the gut microbiota closely participates in the progression of NAFLD through the gut-liver axis or gut-brain-liver axis. The composition of the microbiota can be altered by multiple factors, primarily dietary style, nutritional supplements, or exercise. Recent evidence has revealed that gut microbiota is involved in mitochondrial biogenesis and energy metabolism in the liver by regulating crucial transcription factors, enzymes, or genes. Moreover, microbiota metabolites can also affect mitochondrial oxidative stress function and swallow formation, subsequently controlling the inflammatory response and regulating the levels of inflammatory cytokines, which are the predominant regulators of NAFLD. This review focuses on the changes in the composition of the gut microbiota and metabolites as well as the cross-talk between gut microbiota and mitochondrial function. We thus aim to comprehensively explore the potential mechanisms of gut microbiota in NAFLD and potential therapeutic strategies targeting NAFLD management.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yazhen Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|