1
|
Yuan P, Ma ZH, Yan Y, Li SJ, Wang J, Wu Q. Artificial Intelligence-Based Classification of Anatomical Sites in Esophagogastroduodenoscopy Images. Int J Gen Med 2024; 17:6127-6138. [PMID: 39691834 PMCID: PMC11649499 DOI: 10.2147/ijgm.s481127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 12/19/2024] Open
Abstract
Background A full examination of gastrointestinal tract is an essential prerequisite for effectively detecting gastrointestinal lesions. However, there is a lack of efficient tools to analyze and recognize gastric anatomy locations, preventing the complete portrayal of entire stomach. This study aimed to evaluate the effectiveness of artificial intelligence in identifying gastric anatomy sites by analyzing esophagogastroduodenoscopy images. Methods Using endoscopic images, we proposed a system called the Artificial Intelligence of Medicine (AIMED) through convolutional neural networks and MobileNetV3-large. The performance of artificial intelligence in the recognition of anatomic sites in esophagogastroduodenoscopy images was evaluated by considering many cases. Primary outcomes included diagnostic accuracy, sensitivity, and specificity. Results A total of 160,308 images from 27 categories of the upper endoscopy anatomy classification were included in this retrospective research. As a test group, 16031 esophagogastroduodenoscopy images with 27 categories were used to evaluate AIMED's performance in identifying gastric anatomy sites. The convolutional neural network's accuracy, sensitivity, and specificity were determined to be 99.40%, 91.85%, and 99.69%, respectively. Conclusion The AIMED system achieved high accuracy with regard to recognizing gastric anatomy sites, and it could assist the operator in enhancing the quality control of the used endoscope. Moreover, it could contribute to a more standardized endoscopic performance. Overall, our findings prove that artificial-intelligence-based systems can be indispensable to the endoscopic revolution (Clinical trial registration number: NCT04384575 (12/05/2020)).
Collapse
Affiliation(s)
- Peng Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Zhong-Hua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Yan Yan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Shi-Jie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Jing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| | - Qi Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Endoscopy, Peking University Cancer Hospital & Institute, Beijing, 100142, People’s Republic of China
| |
Collapse
|
2
|
Mudavadkar GR, Deng M, Al-Heejawi SMA, Arora IH, Breggia A, Ahmad B, Christman R, Ryan ST, Amal S. Gastric Cancer Detection with Ensemble Learning on Digital Pathology: Use Case of Gastric Cancer on GasHisSDB Dataset. Diagnostics (Basel) 2024; 14:1746. [PMID: 39202233 PMCID: PMC11354078 DOI: 10.3390/diagnostics14161746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Gastric cancer has become a serious worldwide health concern, emphasizing the crucial importance of early diagnosis measures to improve patient outcomes. While traditional histological image analysis is regarded as the clinical gold standard, it is labour intensive and manual. In recognition of this problem, there has been a rise in interest in the use of computer-aided diagnostic tools to help pathologists with their diagnostic efforts. In particular, deep learning (DL) has emerged as a promising solution in this sector. However, current DL models are still restricted in their ability to extract extensive visual characteristics for correct categorization. To address this limitation, this study proposes the use of ensemble models, which incorporate the capabilities of several deep-learning architectures and use aggregate knowledge of many models to improve classification performance, allowing for more accurate and efficient gastric cancer detection. To determine how well these proposed models performed, this study compared them with other works, all of which were based on the Gastric Histopathology Sub-Size Images Database, a publicly available dataset for gastric cancer. This research demonstrates that the ensemble models achieved a high detection accuracy across all sub-databases, with an average accuracy exceeding 99%. Specifically, ResNet50, VGGNet, and ResNet34 performed better than EfficientNet and VitNet. For the 80 × 80-pixel sub-database, ResNet34 exhibited an accuracy of approximately 93%, VGGNet achieved 94%, and the ensemble model excelled with 99%. In the 120 × 120-pixel sub-database, the ensemble model showed 99% accuracy, VGGNet 97%, and ResNet50 approximately 97%. For the 160 × 160-pixel sub-database, the ensemble model again achieved 99% accuracy, VGGNet 98%, ResNet50 98%, and EfficientNet 92%, highlighting the ensemble model's superior performance across all resolutions. Overall, the ensemble model consistently provided an accuracy of 99% across the three sub-pixel categories. These findings show that ensemble models may successfully detect critical characteristics from smaller patches and achieve high performance. The findings will help pathologists diagnose gastric cancer using histopathological images, leading to earlier identification and higher patient survival rates.
Collapse
Affiliation(s)
- Govind Rajesh Mudavadkar
- College of Engineering, Northeastern University, Boston, MA 02115, USA; (G.R.M.); (M.D.); (S.M.A.A.-H.)
| | - Mo Deng
- College of Engineering, Northeastern University, Boston, MA 02115, USA; (G.R.M.); (M.D.); (S.M.A.A.-H.)
| | | | - Isha Hemant Arora
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Anne Breggia
- MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Bilal Ahmad
- Maine Medical Center, Portland, ME 04102, USA; (B.A.); (R.C.); (S.T.R.)
| | - Robert Christman
- Maine Medical Center, Portland, ME 04102, USA; (B.A.); (R.C.); (S.T.R.)
| | - Stephen T. Ryan
- Maine Medical Center, Portland, ME 04102, USA; (B.A.); (R.C.); (S.T.R.)
| | - Saeed Amal
- The Roux Institute, Department of Bioengineering, College of Engineering at Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Sivari E, Bostanci E, Guzel MS, Acici K, Asuroglu T, Ercelebi Ayyildiz T. A New Approach for Gastrointestinal Tract Findings Detection and Classification: Deep Learning-Based Hybrid Stacking Ensemble Models. Diagnostics (Basel) 2023; 13:diagnostics13040720. [PMID: 36832205 PMCID: PMC9954881 DOI: 10.3390/diagnostics13040720] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Endoscopic procedures for diagnosing gastrointestinal tract findings depend on specialist experience and inter-observer variability. This variability can cause minor lesions to be missed and prevent early diagnosis. In this study, deep learning-based hybrid stacking ensemble modeling has been proposed for detecting and classifying gastrointestinal system findings, aiming at early diagnosis with high accuracy and sensitive measurements and saving workload to help the specialist and objectivity in endoscopic diagnosis. In the first level of the proposed bi-level stacking ensemble approach, predictions are obtained by applying 5-fold cross-validation to three new CNN models. A machine learning classifier selected at the second level is trained according to the obtained predictions, and the final classification result is reached. The performances of the stacking models were compared with the performances of the deep learning models, and McNemar's statistical test was applied to support the results. According to the experimental results, stacking ensemble models performed with a significant difference with 98.42% ACC and 98.19% MCC in the KvasirV2 dataset and 98.53% ACC and 98.39% MCC in the HyperKvasir dataset. This study is the first to offer a new learning-oriented approach that efficiently evaluates CNN features and provides objective and reliable results with statistical testing compared to state-of-the-art studies on the subject. The proposed approach improves the performance of deep learning models and outperforms the state-of-the-art studies in the literature.
Collapse
Affiliation(s)
- Esra Sivari
- Department of Computer Engineering, Cankiri Karatekin University, Cankiri 18100, Turkey
| | - Erkan Bostanci
- Department of Computer Engineering, Ankara University, Ankara 06830, Turkey
| | | | - Koray Acici
- Department of Artificial Intelligence and Data Engineering, Ankara University, Ankara 06830, Turkey
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
- Correspondence:
| | | |
Collapse
|
4
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
5
|
S J, Kandaswami JA. Localization and Semantic Segmentation of Polyp in an Effort of Early Diagnosis of Colorectal Cancer from Wireless Capsule Endoscopy Images. 2022 SEVENTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC) 2022; 52:749-754. [DOI: 10.1109/pdgc56933.2022.10053299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Jothiraj S
- SRM Institute Science and Technology,Department of Biomedical Engineering,Chengalpattu,Kattankulathur,India
| | - Jayanthy Anavai Kandaswami
- SRM Institute Science and Technology,Department of Biomedical Engineering,Chengalpattu,Kattankulathur,India
| |
Collapse
|
6
|
Parkash O, Siddiqui ATS, Jiwani U, Rind F, Padhani ZA, Rizvi A, Hoodbhoy Z, Das JK. Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:1018937. [PMID: 36405592 PMCID: PMC9672666 DOI: 10.3389/fmed.2022.1018937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Artificial Intelligence (AI) holds considerable promise for diagnostics in the field of gastroenterology. This systematic review and meta-analysis aims to assess the diagnostic accuracy of AI models compared with the gold standard of experts and histopathology for the diagnosis of various gastrointestinal (GI) luminal pathologies including polyps, neoplasms, and inflammatory bowel disease. Methods We searched PubMed, CINAHL, Wiley Cochrane Library, and Web of Science electronic databases to identify studies assessing the diagnostic performance of AI models for GI luminal pathologies. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. We performed a meta-analysis and hierarchical summary receiver operating characteristic curves (HSROC). The risk of bias was assessed using Quality Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Subgroup analyses were conducted based on the type of GI luminal disease, AI model, reference standard, and type of data used for analysis. This study is registered with PROSPERO (CRD42021288360). Findings We included 73 studies, of which 31 were externally validated and provided sufficient information for inclusion in the meta-analysis. The overall sensitivity of AI for detecting GI luminal pathologies was 91.9% (95% CI: 89.0–94.1) and specificity was 91.7% (95% CI: 87.4–94.7). Deep learning models (sensitivity: 89.8%, specificity: 91.9%) and ensemble methods (sensitivity: 95.4%, specificity: 90.9%) were the most commonly used models in the included studies. Majority of studies (n = 56, 76.7%) had a high risk of selection bias while 74% (n = 54) studies were low risk on reference standard and 67% (n = 49) were low risk for flow and timing bias. Interpretation The review suggests high sensitivity and specificity of AI models for the detection of GI luminal pathologies. There is a need for large, multi-center trials in both high income countries and low- and middle- income countries to assess the performance of these AI models in real clinical settings and its impact on diagnosis and prognosis. Systematic review registration [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=288360], identifier [CRD42021288360].
Collapse
Affiliation(s)
- Om Parkash
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Uswa Jiwani
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fahad Rind
- Head and Neck Oncology, The Ohio State University, Columbus, OH, United States
| | - Zahra Ali Padhani
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
| | - Arjumand Rizvi
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Jai K. Das
- Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- *Correspondence: Jai K. Das,
| |
Collapse
|
7
|
Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, Sharma P, Savarino E, de Bortoli N. Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases. Aliment Pharmacol Ther 2022; 55:528-540. [PMID: 35098562 PMCID: PMC9305819 DOI: 10.1111/apt.16778] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Artificial intelligence (AI) has recently been applied to endoscopy and questionnaires for the evaluation of oesophageal diseases (ODs). AIM We performed a systematic review with meta-analysis to evaluate the performance of AI in the diagnosis of malignant and benign OD. METHODS We searched MEDLINE, EMBASE, EMBASE Classic and the Cochrane Library. A bivariate random-effect model was used to calculate pooled diagnostic efficacy of AI models and endoscopists. The reference tests were histology for neoplasms and the clinical and instrumental diagnosis for gastro-oesophageal reflux disease (GERD). The pooled area under the summary receiver operating characteristic (AUROC), sensitivity, specificity, positive and negative likelihood ratio (PLR and NLR) and diagnostic odds ratio (DOR) were estimated. RESULTS For the diagnosis of Barrett's neoplasia, AI had AUROC of 0.90, sensitivity 0.89, specificity 0.86, PLR 6.50, NLR 0.13 and DOR 50.53. AI models' performance was comparable with that of endoscopists (P = 0.35). For the diagnosis of oesophageal squamous cell carcinoma, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.97, 0.95, 0.92, 12.65, 0.05 and DOR 258.36, respectively. In this task, AI performed better than endoscopists although without statistically significant differences. In the detection of abnormal intrapapillary capillary loops, the performance of AI was: AUROC 0.98, sensitivity 0.94, specificity 0.94, PLR 14.75, NLR 0.07 and DOR 225.83. For the diagnosis of GERD based on questionnaires, the AUROC, sensitivity, specificity, PLR, NLR and DOR were 0.99, 0.97, 0.97, 38.26, 0.03 and 1159.6, respectively. CONCLUSIONS AI demonstrated high performance in the clinical and endoscopic diagnosis of OD.
Collapse
Affiliation(s)
- Pierfrancesco Visaggi
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Brigida Barberio
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Danila Azzolina
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
- Department of Medical ScienceUniversity of FerraraFerraraItaly
| | - Matteo Martinato
- Unit of Biostatistics, Epidemiology and Public HealthDepartment of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of PadovaPadovaItaly
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas UniversityVia Rita Levi Montalcini 420072 Pieve Emanuele, MilanItaly
- IRCCS Humanitas Research Hospitalvia Manzoni 5620089 Rozzano, MilanItaly
| | - Prateek Sharma
- University of Kansas School of Medicine and VA Medical CenterKansas CityMissouriUSA
| | - Edoardo Savarino
- Division of GastroenterologyDepartment of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
| | - Nicola de Bortoli
- Gastroenterology UnitDepartment of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| |
Collapse
|
8
|
Zhuang H, Bao A, Tan Y, Wang H, Xie Q, Qiu M, Xiong W, Liao F. Application and prospect of artificial intelligence in digestive endoscopy. Expert Rev Gastroenterol Hepatol 2022; 16:21-31. [PMID: 34937459 DOI: 10.1080/17474124.2022.2020646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the progress of science and technology, artificial intelligence represented by deep learning has gradually begun to be applied in the medical field. Artificial intelligence has been applied to benign gastrointestinal lesions, tumors, early cancer, inflammatory bowel disease, gallbladder, pancreas, and other diseases. This review summarizes the latest research results on artificial intelligence in digestive endoscopy and discusses the prospect of artificial intelligence in digestive system diseases. AREAS COVERED We retrieved relevant documents on artificial intelligence in digestive tract diseases from PubMed and Medline. This review elaborates on the knowledge of computer-aided diagnosis in digestive endoscopy. EXPERT OPINION Artificial intelligence significantly improves diagnostic accuracy, reduces physicians' workload, and provides a shred of evidence for clinical diagnosis and treatment. Shortly, artificial intelligence will have high application value in the field of medicine.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Tan
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanyu Wang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meiqi Qiu
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanli Xiong
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhao PY, Han K, Yao RQ, Ren C, Du XH. Application Status and Prospects of Artificial Intelligence in Peptic Ulcers. Front Surg 2022; 9:894775. [PMID: 35784921 PMCID: PMC9244632 DOI: 10.3389/fsurg.2022.894775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Peptic ulcer (PU) is a common and frequently occurring disease. Although PU seriously threatens the lives and health of global residents, the applications of artificial intelligence (AI) have strongly promoted diversification and modernization in the diagnosis and treatment of PU. This minireview elaborates on the research progress of AI in the field of PU, from PU's pathogenic factor Helicobacter pylori (Hp) infection, diagnosis and differential diagnosis, to its management and complications (bleeding, obstruction, perforation and canceration). Finally, the challenges and prospects of AI application in PU are prospected and expounded. With the in-depth understanding of modern medical technology, AI remains a promising option in the management of PU patients and plays a more indispensable role. How to realize the robustness, versatility and diversity of multifunctional AI systems in PU and conduct multicenter prospective clinical research as soon as possible are the top priorities in the future.
Collapse
Affiliation(s)
- Peng-yue Zhao
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ke Han
- Department of Gastroenterology, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| | - Xiao-hui Du
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
- Correspondence: Xiao-hui Du Chao Ren Ren-qi Yao
| |
Collapse
|
10
|
Artificial intelligence in the diagnosis of cirrhosis and portal hypertension. J Med Ultrason (2001) 2021; 49:371-379. [PMID: 34787742 DOI: 10.1007/s10396-021-01153-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Clinically significant portal hypertension is associated with an increased risk of developing gastroesophageal varices and hepatic decompensation. Hepatic venous pressure gradient measurement and esophagogastroduodenoscopy are the gold-standard methods for assessing clinically significant portal hypertension and gastroesophageal varices, respectively. However, invasiveness, cost, and feasibility limit their widespread use, especially if repeated and serial evaluations are required to assess the efficacy of pharmacotherapy. Artificial intelligence describes a range of techniques that allow machines to perform tasks typically thought to require human reasoning and problem-solving skills. Artificial intelligence has made great strides in the field of medicine, and is also involved in portal hypertension diagnosis. Artificial intelligence tools will potentially transform our practice by leveraging massive amounts of data to personalize care to the right patient, in the right amount, at the right time. This review focuses on the recent advances in artificial intelligence for the noninvasive diagnosis of portal hypertension and gastroesophageal varices and monitoring of risk assessment of its complications in clinical practice.
Collapse
|
11
|
Weber MC, Berlet M, Novotny A, Friess H, Reim D. [Reconstruction following gastrectomy]. Chirurg 2021; 92:506-514. [PMID: 33496813 DOI: 10.1007/s00104-020-01350-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Minimally invasive surgical techniques with respect to the treatment of gastric cancer have progressed rapidly over the last few years. Especially in Asia, where the incidence of gastric cancer is ten times higher than in Europe, surgery for gastric cancer is steadily evolving, especially regarding laparoscopic and robot-assisted procedures. This review first discusses the different options for reconstruction of the gastrointestinal passage after gastrectomy, ranging from Billroth procedures to the latest developments, such as the double tract reconstruction. In particular, the possibility of function-preserving partial gastrectomy, such as proximal and distal gastric resection and the corresponding reconstruction techniques are presented. The latest studies and technical developments are presented, especially with respect to laparoscopically assisted, completely laparoscopic and robot-assisted gastrectomies.
Collapse
Affiliation(s)
- Marie-Christin Weber
- Klinikum rechts der Isar, Klinik und Poliklinik für Chirurgie, TU München, Ismaninger Straße 22, 81675, München, Deutschland
| | - Maximilian Berlet
- Klinikum rechts der Isar, Klinik und Poliklinik für Chirurgie, TU München, Ismaninger Straße 22, 81675, München, Deutschland
| | - Alexander Novotny
- Klinikum rechts der Isar, Klinik und Poliklinik für Chirurgie, TU München, Ismaninger Straße 22, 81675, München, Deutschland
| | - Helmut Friess
- Klinikum rechts der Isar, Klinik und Poliklinik für Chirurgie, TU München, Ismaninger Straße 22, 81675, München, Deutschland
| | - Daniel Reim
- Klinikum rechts der Isar, Klinik und Poliklinik für Chirurgie, TU München, Ismaninger Straße 22, 81675, München, Deutschland.
| |
Collapse
|