1
|
Zhu H, Leng J, Ju R, Qu S, Tian J, Leng H, Tao S, Liu C, Wu Z, Ren F, Lyu Y, Zhang N. Advantages of pulsed electric field ablation for COPD: Excellent killing effect on goblet cells. Bioelectrochemistry 2024; 158:108726. [PMID: 38733722 DOI: 10.1016/j.bioelechem.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Mucus hypersecretion resulting from excessive proliferation and metaplasia of goblet cells in the airways is the pathological foundation for Chronic obstructive pulmonary disease (COPD). Clinical trials have confirmed the clinical efficacy of pulsed electric field ablation (PFA) for COPD, but its underlying mechanisms is poorly understood. Cellular and animal models of COPD (rich in goblet cells) were established in this study to detect goblet cells' sensitivity to PFA. Schwan's equation was adopted to calculate the cells' transmembrane potential and the electroporation areas in the cell membrane. We found that goblet cells are more sensitive to low-intensity PFA (250 V/cm-500 V/cm) than BEAS-2B cells. It is attributed to the larger size of goblet cells, which allows a stronger transmembrane potential formation under the same electric field strength. Additionally, the transmembrane potential of larger-sized cells can reach the cell membrane electroporation threshold in more areas. Trypan blue staining confirmed that the cells underwent IRE rate was higher in goblet cells than in BEAS-2B cells. Animal experiments also confirmed that the airway epithelium of COPD is more sensitive to PFA. We conclude that lower-intensity PFA can selectively kill goblet cells in the COPD airway epithelium, ultimately achieving the therapeutic effect of treating COPD.
Collapse
Affiliation(s)
- Haoyang Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Leng
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shenao Qu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiawei Tian
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haoze Leng
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shiran Tao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chang Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Jeon HJ, Chun HJ, Choi HS, Keum B, Kim HB, Kim JH. Biphasic Regulation of Apoptosis Following Gastric Irreversible Electroporation Using Tissue Immunohistochemistry of Activated Caspase-3 with TUNEL Method. Cancers (Basel) 2024; 16:1389. [PMID: 38611067 PMCID: PMC11010973 DOI: 10.3390/cancers16071389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The regulation of apoptosis is the primary goal of ablation therapy. Irreversible electroporation (IRE) is a promising non-thermal tissue ablation-based therapy that induces apoptosis by manipulating electrical conditions. This study aimed to investigate IRE-induced gastric tissue apoptosis in response to changes in the electric field intensity, followed by the repair process. Among the 52 rats used in this study, 24 were used to explore apoptosis, and 28 were used to study regeneration. The apoptosis-to-necrosis ratio of the electrical field strength was evaluated using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and caspase-3 immunohistochemistry. The size of IRE-induced ulcers in the gastric tissue continuously increased with increasing electrical intensity (r2 = 0.830, p < 0.001). The level of apoptosis gradually decreased after peaking at 200 V (1000 V/cm). The size of the 400 V-ablated ulcers continued to decrease, and they were not visible by day 14. The proliferation and migration of epithelial cells with fibroblasts were observed on day 3 and augmented on day 7 post-ablation. This investigation demonstrated the biphasic activation of apoptosis with respect to the electrical field strength. Visually and histologically, IRE-induced gastric ulcers demonstrated complete tissue regeneration after two weeks.
Collapse
Affiliation(s)
- Han Jo Jeon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (H.J.J.); (H.S.C.); (B.K.)
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (H.J.J.); (H.S.C.); (B.K.)
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (H.J.J.); (H.S.C.); (B.K.)
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea; (H.J.J.); (H.S.C.); (B.K.)
| | - Hong Bae Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jong Hyuk Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
3
|
Malyško-Ptašinskė V, Staigvila G, Novickij V. Invasive and non-invasive electrodes for successful drug and gene delivery in electroporation-based treatments. Front Bioeng Biotechnol 2023; 10:1094968. [PMID: 36727038 PMCID: PMC9885012 DOI: 10.3389/fbioe.2022.1094968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Electroporation is an effective physical method for irreversible or reversible permeabilization of plasma membranes of biological cells and is typically used for tissue ablation or targeted drug/DNA delivery into living cells. In the context of cancer treatment, full recovery from an electroporation-based procedure is frequently dependent on the spatial distribution/homogeneity of the electric field in the tissue; therefore, the structure of electrodes/applicators plays an important role. This review focuses on the analysis of electrodes and in silico models used for electroporation in cancer treatment and gene therapy. We have reviewed various invasive and non-invasive electrodes; analyzed the spatial electric field distribution using finite element method analysis; evaluated parametric compatibility, and the pros and cons of application; and summarized options for improvement. Additionally, this review highlights the importance of tissue bioimpedance for accurate treatment planning using numerical modeling and the effects of pulse frequency on tissue conductivity and relative permittivity values.
Collapse
Affiliation(s)
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
4
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
5
|
Han X, Zhang N, Zhang Y, Li Z, Wang Y, Mao L, He T, Li Q, Zhao J, Chen X, Li Y, Qin Z, Lv Y, Ren F. Survival model database of human digestive system cells exposed to electroporation pulses: An in vitro and in silico study. Front Public Health 2022; 10:948562. [PMID: 36133930 PMCID: PMC9484541 DOI: 10.3389/fpubh.2022.948562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023] Open
Abstract
Background and objectives This study aimed to establish a mathematical survival model database containing cell-specific coefficients from human digestive system cells exposed to electroporation pulses (EPs). Materials and methods A total of 20 types of human digestive system cell lines were selected to investigate the effect of EPs on cell viability. Cell viability was measured after exposure to various pulse settings, and a cell survival model was established using the Peleg-Fermi model. Next, the cell-specific coefficients of each cell line were determined. Results Cell viability tended to decrease when exposed to stronger electric field strength (EFS), longer pulse duration, and more pulse number, but the decreasing tendency varied among different cell lines. When exposed to a lower EFS (<1,000 V/cm), only a slight decrease in cell viability occurred. All cell lines showed a similar tendency: the extent of electrical injury (EI) increased with the increase in pulse number and duration. However, there existed differences in heat sensitivity among organs. Conclusions This database can be used for the application of electroporation-based treatment (EBT) in the digestive system to predict cell survival and tissue injury distribution during the treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuchi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingxue Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lujing Mao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianshuai He
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiawen Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zitong Qin
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, Liu Z, Lv Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front Immunol 2022; 12:811726. [PMID: 35069599 PMCID: PMC8777104 DOI: 10.3389/fimmu.2021.811726] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE), a novel non-thermal ablation technique, is utilized to ablate unresectable solid tumors and demonstrates favorable safety and efficacy in the clinic. IRE applies electric pulses to alter the cell transmembrane voltage and causes nanometer-sized membrane defects or pores in the cells, which leads to loss of cell homeostasis and ultimately results in cell death. The major drawbacks of IRE are incomplete ablation and susceptibility to recurrence, which limit its clinical application. Recent studies have shown that IRE promotes the massive release of intracellular concealed tumor antigens that become an “in-situ tumor vaccine,” inducing a potential antitumor immune response to kill residual tumor cells after ablation and inhibiting local recurrence and distant metastasis. Therefore, IRE can be regarded as a potential immunomodulatory therapy, and combined with immunotherapy, it can exhibit synergistic treatment effects on malignant tumors, which provides broad application prospects for tumor treatment. This work reviewed the current status of the clinical efficacy of IRE in tumor treatment, summarized the characteristics of local and systemic immune responses induced by IRE in tumor-bearing organisms, and analyzed the specific mechanisms of the IRE-induced immune response. Moreover, we reviewed the current research progress of IRE combined with immunotherapy in the treatment of solid tumors. Based on the findings, we present deficiencies of current preclinical studies of animal models and analyze possible reasons and solutions. We also propose possible demands for clinical research. This review aimed to provide theoretical and practical guidance for the combination of IRE with immunotherapy in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Zhang Y, Han X, Li Z, Zhang Y, Liang L, Ma X, Liu H, Gao Y, Li Q, Chen X, Lv Y, Ren F. Physiological and histopathological effects of electroporation pulse on stomach of rats. BMC Gastroenterol 2021; 21:351. [PMID: 34556038 PMCID: PMC8461917 DOI: 10.1186/s12876-021-01924-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) is an emerging tissue ablation technique with widespread potential, especially for cancer treatment. Although the safety and efficacy of IRE for gastric tissue ablation have been demonstrated, there is a gap of knowledge regarding the effect of electroporation pulse (EP) on the physiology and histopathology of the stomach. This study applied EP to the stomach of healthy rats and investigated the digestive function, serum marker levels, and gastric tissue structure of EP-treated rats. METHODS Ninety male rats were divided into nine groups and examined up to 28 days post-treatment. A single burst of electroporation pulse (500 V, 99 pluses, 1 Hz, 100 µs) was delivered to the stomachs of rats using a tweezer-style round electrode. Gastric emptying, small intestinal transit, and gastric secretion were measured to evaluate the digestive function. Serum marker levels were determined using ELISA. Haematoxylin-eosin, Masson trichrome, and immunofluorescence were performed for histopathological analysis. RESULTS No significant effect on gastric emptying or secretion was found post-EP, whereas the small intestinal transit decreased at 4 h and rapidly recovered to normal on 1-day post-EP. Further, serum TNF-α and IL-1β levels temporarily changed during the acute phase but returned to baseline within 28 days. Moreover, histopathological analysis revealed that cell death occurred immediately post-EP in the ablation area, whereas the gastric wall scaffold in the ablation region remained intact post-EP. CONCLUSIONS This study demonstrates the safety and efficacy of EP on the physiology and histopathology of the stomach and lays a foundation for more comprehensive applications of this technique.
Collapse
Affiliation(s)
- Yuchi Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China.,Electrical Science and Technology Research Institute, School of Electrical Engineering, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, 710049, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China
| | - Yu Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China
| | - Lihong Liang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China
| | - Xiaoying Ma
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China
| | - Haonan Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China
| | - Yihui Gao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China
| | - Qingshan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China. .,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China.
| | - Fenggang Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, 710061, China. .,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, No.277, West Yanta Road, Xi'an, 710061, China.
| |
Collapse
|