1
|
Watanabe A, Miranda de Menezes Neves PD, Nunes K, Lerario AM, Watanabe EH, Ferreira FM, Avancini Costa Malheiros DM, de Moraes Narcizo A, Guaragna MS, de Almeida Araujo S, Cruz TM, Fontes JS, Santoro Belangero VM, Vaisbich MH, Hildebrandt F, Sampson MG, Onuchic LF. Steroid-Resistant Nephrotic Syndrome Is Associated With a Unique Genetic Profile in a Highly Admixed Pediatric Population. Kidney Int Rep 2024; 9:3501-3516. [PMID: 39698360 PMCID: PMC11652071 DOI: 10.1016/j.ekir.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction The profile of genetic and nongenetic factors associated with progression to kidney failure (KF) in steroid-resistant nephrotic syndrome (SRNS) is largely unknown in admixed populations. Methods A total of 101 pediatric patients with primary SRNS were genetically assessed targeting Mendelian causes and APOL1 status with a 62-NS-gene panel or whole exome sequencing, as well as genetic ancestry. Variant pathogenicity was evaluated using the American College Medical of Genetics and Genomics (ACMG) criteria. Results Focal segmental glomerulosclerosis (FSGS) was diagnosed in 54% of patients whereas familial disease was reported by 13%. The global genetic ancestry was 65% European, 22% African, 10.5% Native American, and 2% East-Asian, while 96% of cases presented with the first 3 components. APOL1 high-risk genotypes were identified in 8% of families and causative Mendelian variants in 12%: NPHS1 = 3, NPHS2 = 3, PLCE1 = 2, WT1 = 2, COQ2 = 1, and CUBN = 1. Two novel causative variants arose in the Native American background. The percentage of African genetic ancestry did not associate with the number of APOL1 risk alleles. Forty-four percent of all patients progressed to KF. Mendelian forms and APOL1 high-risk genotypes were associated with faster progression to KF. Cox regression analyses revealed that higher non-European genetic ancestry, self-declared non-White ethnicity, age of onset <1 year or ≥9 years, and non-minimal change disease (MCD) histology associated with higher risk of KF, independently of genetic findings. Conclusion Mendelian variants and APOL1 high-risk genotype compose a unique causative genetic profile associated with pediatric SRNS in this highly admixed population, accounting for approximately 20% of families. This ancestry pattern is consistent with the identification of APOL1 high-risk genotypes in children with low proportion of African genetic ancestry. Self-declared ethnicity, age of manifestation and histology were independently associated with the risk of KF.
Collapse
Affiliation(s)
- Andreia Watanabe
- Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Precil Diego Miranda de Menezes Neves
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Elieser Hitoshi Watanabe
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | - Amanda de Moraes Narcizo
- Laboratório de Sequenciamento em Larga Escala (SELA), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mara Sanches Guaragna
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | | | - Thais Medeiros Cruz
- Division of Pediatric Nephrology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jussara Soares Fontes
- Federal University of São João Del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Brazil
| | | | - Maria Helena Vaisbich
- Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Friedhelm Hildebrandt
- Division of Pediatric Nephrology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Matthew Gordon Sampson
- Division of Pediatric Nephrology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Luiz Fernando Onuchic
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
2
|
Mikó Á, K Menyhárd D, Kaposi A, Antignac C, Tory K. The mutation-dependent pathogenicity of NPHS2 p.R229Q: A guide for clinical assessment. Hum Mutat 2018; 39:1854-1860. [PMID: 30260545 DOI: 10.1002/humu.23660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/08/2022]
Abstract
NPHS2, encoding podocin, is the major gene implicated in steroid-resistant nephrotic syndrome. Its c.686G>A, p.R229Q variant is the first human variant with a mutation-dependent pathogenicity; it is only pathogenic when trans-associated to specific mutations. Secondary to its high allele frequency in the European, South Asian, African, and Latino populations, its benign trans-associations can be accidentally identified in affected patients. Distinguishing pathogenic and benign p.R229Q associations can be challenging. In this paper, we present the currently known pathogenic and benign associations, and show that a rare p.R229Q association can be considered pathogenic if the variant in trans meets the following criteria; it affects the 270-351 residues and alters but does not disrupt the oligomerization, its p.R229Q association is found in a family with slowly progressing focal segmental glomerulosclerosis, but is expected to be rare in the general population (<1:106 ). We show that >15% of the p.R229Q associations identified so far in patients are benign.
Collapse
Affiliation(s)
- Ágnes Mikó
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary.,Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ambrus Kaposi
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Diseases, INSERM, UMR 1163, Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Département de Génétique, Paris, France
| | - Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary.,Semmelweis University, Ist Department of Pediatrics, Budapest, Hungary
| |
Collapse
|
3
|
Fan J, Fu R, Ren F, He J, Wang S, Gou M. A case report of CRB2 mutation identified in a Chinese boy with focal segmental glomerulosclerosis. Medicine (Baltimore) 2018; 97:e12362. [PMID: 30212996 PMCID: PMC6156060 DOI: 10.1097/md.0000000000012362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Focal segmental glomerulosclerosis (FSGS) is a common disease resulting in end-stage renal disease. The incidence of FSGS is increasing in Western countries. The clinical manifestations include proteinuria, hypoproteinemia, oedema, and hypertension. Single-gene heritable mutations are considered to be the source of FSGS pathogenicity according to recent in-depth studies on the pathogenesis. Here, we first reported the case of a Chinese boy whose histology presented with FSGS caused by a compound heterozygous mutation. PATIENT CONCERNS A 7-year-old Chinese boy was repeatedly admitted to our hospital for fever, cough, and proteinuria since he was 1.6 years old. DIAGNOSES FSGS was identified by renal biopsy. Whole exome sequencing (WES) showed that a novel mutation of crumbs homolog 2 (CRB2) was identified in a Chinese boy with FSGS. INTERVENTIONS Patient was treated with low-dose corticosteroid and mycophenolate mofetil for maintenance therapy. OUTCOMES At last follow-up, protein (+∼++) was observed in his urinalysis. LESSONS We identified a novel mutation of CRB2 in a Chinese boy with FSGS that had never been described in a previous report. These findings suggested that mutations in recessive disease genes are more frequent among early-onset disease.
Collapse
|
4
|
Jaramillo L, Tarazona D, Levano K, Galarza M, Caceres O, Becker M, Guio H. A rapid identification technique for drug-resistant Mycobacterium tuberculosis isolates using mismatch specific cleavage enzyme. Bioinformation 2018; 14:404-407. [PMID: 30262979 PMCID: PMC6143358 DOI: 10.6026/97320630014404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 11/24/2022] Open
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains is a major health problem for high Tuberculosis (TB) incidence countries. Therefore, it is of interest to identify antibiotic resistant bacteria by mismatch detection using DNA hybridization. We generated PCR products for five genes (rpoB, inhA, katG, gyrA and rrs) associated with drug resistance TB from MDR and XDR Mycobacterium tuberculosis (MTB) DNA samples. These were hybridized to PCR products from MTB H37Rv (pansusceptible laboratory strain) to generate DNA hetero-duplex products, which was digested by Detection Enzyme (GeneArt Genomic Cleavage Detection Kit) and visualized by agarose gel electrophoresis. Results show different bands with sizes of 400 bp and 288 bp (rpoB), 280 bp (inhA), 310 bp (katG), 461 bp (gyrA) and 427 bp (rrs) suggesting mutations in DNA heteroduplex for each gene. Detection Enzyme specifically cleaves DNA hetero-duplex with mismatch. The technique helps in the improved detection of MDR (mutations in rpoB, inhA and katG) and XDR (mutations in rpoB, inhA katG, gyrA and rrs) MTB strains. Moreover, the technique is customized without expensive specialized equipment to detect mutations. It is also fast, efficient and easy to implement in standard molecular biology laboratories.
Collapse
Affiliation(s)
- Luis Jaramillo
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| | - David Tarazona
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| | - Kelly Levano
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| | - Marco Galarza
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| | - Omar Caceres
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| | - Maximilian Becker
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| | - Heinner Guio
- Laboratorio de Biotecnologia y Biologia Molecular, Centro Nacional de Salud Publica, Instituto Nacional de Salud, Lima, Peru
| |
Collapse
|
5
|
Stefanou C, Pieri M, Savva I, Georgiou G, Pierides A, Voskarides K, Deltas C. Co-Inheritance of Functional Podocin Variants with Heterozygous Collagen IV Mutations Predisposes to Renal Failure. Nephron Clin Pract 2015; 130:200-12. [PMID: 26138234 DOI: 10.1159/000432406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS A subset of patients who present with proteinuria and are diagnosed with focal segmental glomerulosclerosis (FSGS) have inherited heterozygous COL4A3/A4 mutations and are also diagnosed with thin basement membrane nephropathy (TBMN-OMIM: 141200). Two studies showed that co-inheritance of NPHS2-p.Arg229Gln, a podocin variant, may increase the risk for proteinuria and renal function decline. METHODS We hypothesized that additional podocin variants may exert a similar effect. We studied genetically a well-characterized Cypriot TBMN patient cohort by re-sequencing the NPHS2 coding region. We also performed functional studies in cell culture experiments, investigating the interaction of podocin variants with itself and with nephrin. RESULTS Potentially disease-modifying podocin variants were searched for by analyzing NPHS2 in 35 'severe' TBMN patients. One non-synonymous variant, p.Glu237Gln, was detected. Both variants, p.Arg229Gln and p.Glu237Gln, were tested in a larger cohort of 122 TBMN patients, who were categorized as 'mild' or 'severe' based on the presence of microscopic hematuria alone or combined with chronic renal failure and/or proteinuria. Seven 'severe' patients carried either of the 2 variants; none was present in the 'mild' patients (p = 0.05, Pearson χ(2)). The 7 carriers belong in 2 families segregating mutation COL4A3-p.Gly1334Glu. Inheritance of the wild-type (WT) and mutant alleles correlated with the phenotype (combined concordance probability 0.003). Immunofluorescence (IF) experiments after dual co-transfection of WT and mutant podocin suggested altered co-localization of mutant homodimers. IF experiments after co-transfection of WT podocin and nephrin showed normal membrane localization, while both podocin variants interfered with normal trafficking, demonstrating perinuclear staining. Immunoprecipitation experiments showed stronger binding of mutant podocin to WT podocin or nephrin. CONCLUSION The results support the hypothesis that certain hypomorphic podocin variants may act as adverse genetic modifiers when co-inherited with COL4A3/A4 mutations, thus predisposing to FSGS and severe kidney function decline.
Collapse
Affiliation(s)
- Charalambos Stefanou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
6
|
Papazachariou L, Demosthenous P, Pieri M, Papagregoriou G, Savva I, Stavrou C, Zavros M, Athanasiou Y, Ioannou K, Patsias C, Panagides A, Potamitis C, Demetriou K, Prikis M, Hadjigavriel M, Kkolou M, Loukaidou P, Pastelli A, Michael A, Lazarou A, Arsali M, Damianou L, Goutziamani I, Soloukides A, Yioukas L, Elia A, Zouvani I, Polycarpou P, Pierides A, Voskarides K, Deltas C. Frequency of COL4A3/COL4A4 mutations amongst families segregating glomerular microscopic hematuria and evidence for activation of the unfolded protein response. Focal and segmental glomerulosclerosis is a frequent development during ageing. PLoS One 2014; 9:e115015. [PMID: 25514610 PMCID: PMC4267773 DOI: 10.1371/journal.pone.0115015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/17/2014] [Indexed: 12/29/2022] Open
Abstract
Familial glomerular hematuria(s) comprise a genetically heterogeneous group of conditions which include Alport Syndrome (AS) and thin basement membrane nephropathy (TBMN). Here we investigated 57 Greek-Cypriot families presenting glomerular microscopic hematuria (GMH), with or without proteinuria or chronic kidney function decline, but excluded classical AS. We specifically searched the COL4A3/A4 genes and identified 8 heterozygous mutations in 16 families (28,1%). Eight non-related families featured the founder mutation COL4A3-p.(G1334E). Renal biopsies from 8 patients showed TBMN and focal segmental glomerulosclerosis (FSGS). Ten patients (11.5%) reached end-stage kidney disease (ESKD) at ages ranging from 37-69-yo (mean 50,1-yo). Next generation sequencing of the patients who progressed to ESKD failed to reveal a second mutation in any of the COL4A3/A4/A5 genes, supporting that true heterozygosity for COL4A3/A4 mutations predisposes to CRF/ESKD. Although this could be viewed as a milder and late-onset form of autosomal dominant AS, we had no evidence of ultrastructural features or extrarenal manifestations that would justify this diagnosis. Functional studies in cultured podocytes transfected with wild type or mutant COL4A3 chains showed retention of mutant collagens and differential activation of the unfolded protein response (UPR) cascade. This signifies the potential role of the UPR cascade in modulating the final phenotype in patients with collagen IV nephropathies.
Collapse
Affiliation(s)
- Louiza Papazachariou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Demosthenous
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Myrtani Pieri
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Gregory Papagregoriou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Isavella Savva
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | | | - Michael Zavros
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Kyriakos Ioannou
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Alexia Panagides
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | - Costas Potamitis
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Marios Prikis
- Department of Nephrology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Maria Kkolou
- Department of Nephrology, Larnaca General Hospital, Larnaca, Cyprus
| | | | | | - Aristos Michael
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Akis Lazarou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Maria Arsali
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - Loukas Damianou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | | | | | - Lakis Yioukas
- Department of Nephrology, Paphos General Hospital, Paphos, Cyprus
| | - Avraam Elia
- Department of Pediatrics, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | - Ioanna Zouvani
- Department of Histopathology, Nicosia General Hospital, Nicosia, Cyprus
| | | | - Alkis Pierides
- Department of Nephrology, Hippocrateon Hospital, Nicosia, Cyprus
- * E-mail: (CD); (A. Pierides)
| | - Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, University of Cyprus, Nicosia, Cyprus
- * E-mail: (CD); (A. Pierides)
| |
Collapse
|
7
|
Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nat Genet 2014; 46:299-304. [PMID: 24509478 DOI: 10.1038/ng.2898] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/17/2014] [Indexed: 02/07/2023]
Abstract
Monogenic disorders result from defects in a single gene. According to Mendel's laws, these disorders are inherited in either a recessive or dominant fashion. Autosomal-recessive disorders require a disease-causing variant on both alleles, and according to our current understanding, their pathogenicities are not influenced by each other. Here we present an autosomal-recessive disorder, nephrotic syndrome type 2 (MIM 600995), in which the pathogenicity of an NPHS2 allele encoding p.Arg229Gln depends on the trans-associated mutation. We show that, contrary to expectations, this allele leads to a disease phenotype only when it is associated specifically with certain 3' NPHS2 mutations because of an altered heterodimerization and mislocalization of the encoded p.Arg229Gln podocin. The disease-associated 3' mutations exert a dominant-negative effect on p.Arg229Gln podocin but behave as recessive alleles when associated with wild-type podocin. Therefore, the transmission rates for couples carrying the disease-associated mutations and p.Arg229Gln may be substantially different from those expected in autosomal-recessive disorders.
Collapse
|
8
|
Bouchireb K, Boyer O, Gribouval O, Nevo F, Huynh-Cong E, Morinière V, Campait R, Ars E, Brackman D, Dantal J, Eckart P, Gigante M, Lipska BS, Liutkus A, Megarbane A, Mohsin N, Ozaltin F, Saleem MA, Schaefer F, Soulami K, Torra R, Garcelon N, Mollet G, Dahan K, Antignac C. NPHS2Mutations in Steroid-Resistant Nephrotic Syndrome: A Mutation Update and the Associated Phenotypic Spectrum. Hum Mutat 2013; 35:178-86. [DOI: 10.1002/humu.22485] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/05/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Karim Bouchireb
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie Pédiatrique; Centre de Référence des Maladies Rénales Héréditaires (MARHEA), Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Olivia Boyer
- Assistance Publique-Hôpitaux de Paris, Service de Néphrologie Pédiatrique; Centre de Référence des Maladies Rénales Héréditaires (MARHEA), Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Olivier Gribouval
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Fabien Nevo
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Evelyne Huynh-Cong
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Vincent Morinière
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
| | - Raphaëlle Campait
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
| | - Elisabet Ars
- Molecular Biology Laboratory; Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III; Barcelona Spain
| | - Damien Brackman
- Department of Pediatrics; Haukeland University Hospital; Bergen Norway
| | - Jacques Dantal
- Service de Néphrologie et Immunologie Clinique; ITERT, CHU Hôtel Dieu; Nantes France
| | | | - Maddalena Gigante
- Department of Medical and Surgical Sciences; University of Foggia; Foggia Italy
| | - Beata S. Lipska
- Department of Biology and Genetics; Medical University of Gdansk; Gdansk 80-211 Poland
| | - Aurélia Liutkus
- Service de Néphrologie et Rhumatologie Pédiatriques; Centre de référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant; Bron France
| | - André Megarbane
- Unité de Génétique Médicale, Faculté de Médecine; Université Saint Joseph; Beirut Lebanon
| | - Nabil Mohsin
- Department of Nephrology; Royal Hospital; Muscat Oman
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology; Hacettepe University Faculty of Medicine; Ankara Turkey
| | - Moin A. Saleem
- Department of Paediatric Nephrology; Bristol Royal Hospital for Children, Academic Renal Unit, School of Clinical Sciences, University of Bristol; Bristol UK
| | - Franz Schaefer
- PodoNet Consortium; Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine; Heidelberg Germany
| | - Kenza Soulami
- CHU Ibn Rochd; Service de Néphrologie Dialyse Transplantation; Casablanca Morocco
| | - Roser Torra
- Nephrology Department; Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III; Barcelona Spain
| | - Nicolas Garcelon
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
- Inserm U872; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
| | - Géraldine Mollet
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| | - Karin Dahan
- Centre de Génétique Humaine; Université Catholique de Louvain; Bruxelles Belgique
| | - Corinne Antignac
- Assistance Publique-Hôpitaux de Paris; Département de Génétique, Hôpital Necker-Enfants Malades; Paris France
- Inserm U983; Institut Imagine, Hôpital Necker-Enfants Malades; Paris France
- Université Paris Descartes-Sorbonne Paris Cité; Paris France
| |
Collapse
|
9
|
Megremis S, Mitsioni A, Mitsioni AG, Fylaktou I, Kitsiou-Tzelli S, Stefanidis CJ, Kanavakis E, Traeger-Synodinos J. Nucleotide variations in the NPHS2 gene in Greek children with steroid-resistant nephrotic syndrome. Genet Test Mol Biomarkers 2009; 13:249-56. [PMID: 19371226 DOI: 10.1089/gtmb.2008.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, are a major cause of autosomal-recessive steroid-resistant nephrotic syndrome (SRNS) in childhood, accounting for up to 30% of sporadic and 20-40% of familial cases. Among 22 Greek children with a clinical diagnosis of SRNS, mutation analysis was performed in all eight NPHS2 gene exons, using denaturing gradient gel electrophoresis and DNA sequencing. The frequency of all nucleotide variations found in patients was also evaluated in 100 unrelated samples (18-30 years) with no known history of nephrotic disease. Three pathogenic genotypes (R138Q/R138Q, R229Q/A295T, and R168H/R168H) accounted for 3/14 (21%) of sporadic patients; the A295T mutation in exon 8 (c.883G>A) is novel and predicted in silico to be pathogenic. Among the familial cases, a single patient was heterozygous for R229Q. Several known polymorphisms were found, including the in cis variants IVS3-46C>T plus IVS3-21C>T, IVS7+7A>G A and exonic variants S96S (c.288C>T), A318A (c.954T>C), and L346L (c.1038A>G), with allele frequencies comparable to those in other populations. A novel substitution (IVS3-17C>T) was found in two related patients, but in no controls. In conclusion, podocin mutations do not appear to be a major cause of SRNS in Greek children, although the study cohort was small. However, NPHS2 gene analysis could still be considered in Greek SRNS patients to support appropriate management. The present study also contributes potentially useful observations for the clinical management of SRNS patients.
Collapse
Affiliation(s)
- Spyridon Megremis
- Medical Genetics, Aghia Sofia Children's Hospital, Athens University, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Voskarides K, Deltas C. Screening for mutations in kidney-related genes using SURVEYOR nuclease for cleavage at heteroduplex mismatches. J Mol Diagn 2009; 11:311-8. [PMID: 19525337 PMCID: PMC2710707 DOI: 10.2353/jmoldx.2009.080144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2009] [Indexed: 11/20/2022] Open
Abstract
SURVEYOR is a new mismatch-specific plant DNA endonuclease that is very efficient for mutation scanning in heteroduplex DNA. It is much faster, cheaper, more sensitive, and easier to perform than other "traditional" mutation detection methods such as single-strand conformation polymorphism analysis, denaturing high-performance liquid chromatography, heteroduplex analysis, and phage resolvases. This is the first comprehensive report on the use of SURVEYOR for screening genes implicated in a spectrum of inherited renal diseases. Of the 48.2 kb screened, 44 variations were identified, accounting for one variation per 1.1 kb. The re-sequencing of multiple samples did not reveal any variation that had not been identified by SURVEYOR, attesting to its high fidelity. Additionally, we tested this enzyme against 15 known variants, 14 of which it identified, thus showing a sensitivity of 93%. We showed that the genetic heterogeneity of renal diseases can be easily overcome using this enzyme with a high degree of confidence and no bias for any specific variations. We also showed for the first time that SURVEYOR does not demonstrate any preference regarding mismatch cleavage at specific positions. Disadvantages of using SURVEYOR include enhanced exonucleolytic activity for some polymerase chain reaction products and less than 100% sensitivity. We report that SURVEYOR can be used as a mutation detection method with a high degree of confidence, offering an excellent alternative for low-budget laboratories and for the rapid manipulation of multiple genes.
Collapse
Affiliation(s)
| | - Constantinos Deltas
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|