1
|
Panzade G, Srivastava T, Heruth DP, Rezaiekhaligh MH, Zhou J, Lyu Z, Sharma M, Joshi T. Employing Multi-Omics Analyses to Understand Changes during Kidney Development in Perinatal Interleukin-6 Animal Model. Cells 2024; 13:1667. [PMID: 39404429 PMCID: PMC11476440 DOI: 10.3390/cells13191667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic kidney disease (CKD) is a leading cause of morbidity and mortality globally. Maternal obesity during pregnancy is linked to systemic inflammation and elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6). In our previous work, we demonstrated that increased maternal IL-6 during gestation impacts intrauterine development in mice. We hypothesized that IL-6-induced inflammation alters gene expression in the developing fetus. To test this, pregnant mice were administered IL-6 or saline during mid-gestation. Newborn mouse kidneys were analyzed using mRNA-seq, miRNA-seq and whole-genome bisulfite-seq (WGBS). A multi-omics approach was employed to quantify mRNA gene expression, miRNA expression and DNA methylation, using advanced bioinformatics and data integration techniques. Our analysis identified 19 key genes present in multiple omics datasets, regulated by epigenetics and miRNAs. We constructed a regulatory network for these genes, revealing disruptions in pathways such as Mannose type O-glycan biosynthesis, the cell cycle, apoptosis and FoxO signaling. Notably, the Atp7b gene was regulated by DNA methylation and miR-223 targeting, whereas the Man2a1 gene was controlled by DNA methylation affecting energy metabolism. These findings suggest that these genes may play a role in fetal programming, potentially leading to CKD later in life due to gestational inflammation.
Collapse
Affiliation(s)
- Ganesh Panzade
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA; (T.S.); (M.H.R.)
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA;
| | - Daniel P. Heruth
- Children’s Mercy Research Institute, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Mohammad H. Rezaiekhaligh
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA; (T.S.); (M.H.R.)
| | - Jianping Zhou
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA;
- Kansas City VA Medical Center, Kansas City, MO 64128, USA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Mukut Sharma
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA;
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Xue S, Du X, Yu M, Ju H, Tan L, Li Y, Liu J, Wang C, Wu X, Xu H, Shen Q. Overexpression of long noncoding RNA 4933425B07Rik leads to renal hypoplasia by inactivating Wnt/β-catenin signaling pathway. Front Cell Dev Biol 2023; 11:1267440. [PMID: 37915768 PMCID: PMC10616775 DOI: 10.3389/fcell.2023.1267440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is a general term for a class of diseases that are mostly caused by intrauterine genetic development limitation. Without timely intervention, certain children with CAKUT may experience progressive decompensation and a rapid decline in renal function, which will ultimately result in end-stage renal disease. At present, a comprehensive understanding of the pathogenic signaling events of CAKUT is lacking. The role of long noncoding RNAs (lncRNAs) in renal development and disease have recently received much interest. In previous research, we discovered that mice overexpressing the lncRNA 4933425B07Rik (Rik) showed a range of CAKUT phenotypes, primarily renal hypoplasia. The current study investigated the molecular basis of renal hypoplasia caused by Rik overexpression. We first used Rapid Amplification of cDNA ends (RACE) to obtain the full-length sequence of Rik in Rik +/+;Hoxb7 mice. Mouse proximal renal tubule epithelial cells (MPTCs) line with Rik overexpression was constructed using lentiviral methods, and mouse metanephric mesenchyme cell line (MK3) with Rik knockout was then constructed by the CRISPR‒Cas9 method. We performed RNA-seq on the Rik-overexpressing cell line to explore possible differentially expressed molecules and pathways. mRNA expression was confirmed by qRT‒PCR. Reduced levels of Wnt10b, Fzd8, and β-catenin were observed when Rik was expressed robustly. On the other hand, these genes were more highly expressed when Rik was knocked out. These results imply that overabundance of Rik might inhibit the Wnt/β-catenin signaling pathway, which may result in renal hypoplasia. In general, such research might help shed light on CAKUT causes and processes and offer guidance for creating new prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Xue
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xuanjin Du
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lihong Tan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yaxin Li
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
4
|
Gomes JS, Sene LB, Lamana GL, Boer PA, Gontijo JAR. Impact of maternal protein restriction on Hypoxia-Inducible Factor (HIF) expression in male fetal kidney development. PLoS One 2023; 18:e0266293. [PMID: 37141241 PMCID: PMC10159110 DOI: 10.1371/journal.pone.0266293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Kidney developmental studies have demonstrated molecular pathway changes that may be related to decreased nephron numbers in the male 17 gestational days (17GD) low protein (LP) intake offspring compared to normal protein intake (NP) progeny. Here, we evaluated the HIF-1 and components of its pathway in the kidneys of 17-GD LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS Pregnant Wistar rats were allocated into two groups: NP (regular protein diet-17%) or LP (Low protein diet-6%). Taking into account miRNA transcriptome sequencing previous study (miRNA-Seq) in 17GD male offspring kidneys investigated predicted target genes and proteins related to the HIF-1 pathway by RT-qPCR and immunohistochemistry. RESULTS In the present study, in male 17-GD LP offspring, an increased elF4, HSP90, p53, p300, NFκβ, and AT2 gene encoding compared to the NP progeny. Higher labeling of HIF-1α CAP cells in 17-DG LP offspring was associated with reduced elF4 and phosphorylated elF4 immunoreactivity in LP progeny CAP cells. In 17DG LP, the NFκβ and HSP90 immunoreactivity was enhanced, particularly in the CAP area. DISCUSSION AND CONCLUSION The current study supported that the programmed reduced nephron number in the 17-DG LP offspring may be related to changes in the HIF-1α signaling pathway. Factors that facilitate the transposition of HIF-1α to progenitor renal cell nuclei, such as increased NOS, Ep300, and HSP90 expression, may have a crucial role in this regulatory system. Also, HIF-1α changes could be associated with reduced transcription of elF-4 and its respective signaling path.
Collapse
Affiliation(s)
- Julia Seva Gomes
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Leticia Barros Sene
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - Patricia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| | - José Antonio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas State University (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
5
|
de Barros Sene L, Lamana GL, Schwambach Vieira A, Scarano WR, Gontijo JAR, Boer PA. Gestational Low Protein Diet Modulation on miRNA Transcriptome and Its Target During Fetal and Breastfeeding Nephrogenesis. Front Physiol 2021; 12:648056. [PMID: 34239447 PMCID: PMC8258388 DOI: 10.3389/fphys.2021.648056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The kidney ontogenesis is the most structurally affected by gestational protein restriction, reducing 28% of their functional units. The reduced nephron number is predictive of hypertension and cardiovascular dysfunctions that are generally observed in the adult age of most fetal programming models. We demonstrate miRNAs and predict molecular pathway changes associated with reduced reciprocal interaction between metanephros cap (CM) and ureter bud (UB) and a 28% decreased nephron stem cells in the 17 gestational days (17GD) low protein (LP) intake male fetal kidney. Here, we evaluated the same miRNAs and predicted targets in the kidneys of 21GD and at 7 days of life (7DL) LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS Pregnant Wistar rats were allocated into two groups: NP (regular protein diet- 17%) or LP (diet-6%). miRNA transcriptome sequencing (miRNA-Seq) was performed on the MiSeq platform from 21GD and 7DL male offspring kidneys using previously described methods. Among the top 10 dysfunctional regulated miRNAs, we validated 7 related to proliferation, differentiation, and apoptosis processes and investigated predicted target genes and proteins by RT-qPCR and immunohistochemistry. RESULTS In 21GD, LP fetuses were identified alongside 21 differently expressed miRNAs, of which 12 were upregulated and 9 downregulated compared to age-matched NP offspring. In 7-DL LP offspring, the differentially expressed miRNAs were counted to be 74, of which 46 were upregulated and 28 downregulated. The curve from 17-GD to 7-DL shows that mTOR was fundamental in reducing the number of nephrons in fetal kidneys where the mothers were subjected to a protein restriction. IGF1 and TGFβ curves also seemed to present the same mTOR pattern and were modulated by miRNAs 181a-5p, 181a-3p, and 199a-5p. The miRNA 181c-3p modulated SIX2 and Notch1 reduction in 7-DL but not in terms of the enhanced expression of both in the 21-GD, suggesting the participation of an additional regulator. We found enhanced Bax in 21-GD; it was regulated by miRNA 298-5p, and Bcl2 and Caspase-3 were controlled by miRNA (by 7a-5p and not by the predicted 181a-5p). The miRNA 144-3p regulated BCL6, which was enhanced, as well as Zeb 1 and 2 induced by BCL6. These results revealed that in 21GD, the compensatory mechanisms in LP kidneys led to the activation of UB ramification. Besides, an increase of 32% in the CM stem cells and a possible cell cycle halt of renal progenitor cells, which remaining undifferentiated, were observed. In the 7DL, much more altered miRNA expression was found in LP kidneys, and this was probably due to an increased maternal diet content. Additionally, we verified the activation of pathways related to differentiation and consumption of progenitor cells.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Andre Schwambach Vieira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| |
Collapse
|
6
|
Neurophysiological control of urinary bladder storage and voiding-functional changes through development and pathology. Pediatr Nephrol 2021; 36:1041-1052. [PMID: 32415328 DOI: 10.1007/s00467-020-04594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
The effective storage of urine and its expulsion relies upon the coordinated activity of parasympathetic, sympathetic, and somatic innervations to the lower urinary tract (LUT). At birth, all mammalian neonates lack the ability to voluntary regulate bladder storage or voiding. The ability to control urinary bladder activity is established as connections to the central nervous system (CNS) form through development. The neural regulation of the LUT has been predominantly investigated in adult animal models where comparatively less is known about the neonatal and postnatal neurophysiological development that facilitate urinary continence. Furthermore, congenital neurological or anatomical defects can adversely affect both storage and voiding functions through postnatal development and into adulthood, leading to secondary conditions including vesicoureteral reflux, chronic urinary tract infections, and end-stage renal disease. Therefore, the aim of the review is to provide the current knowledge available on neurophysiological regulation of the LUT through pre- to postnatal development of human and animal models and the consequences of congenital anomalies that can affect LUT neural function.
Collapse
|
7
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|
8
|
Sene LDB, Scarano WR, Zapparoli A, Gontijo JAR, Boer PA. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS One 2021; 16:e0246289. [PMID: 33544723 PMCID: PMC7864410 DOI: 10.1371/journal.pone.0246289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Here, we have demonstrated that gestational low-protein (LP) intake offspring present lower birth weight, reduced nephron numbers, renal salt excretion, arterial hypertension, and renal failure development compared to regular protein (NP) intake rats in adulthood. We evaluated the expression of various miRNAs and predicted target genes in the kidney in gestational 17-days LP (DG-17) fetal metanephros to identify molecular pathways involved in the proliferation and differentiation of renal embryonic or fetal cells. METHODS Pregnant Wistar rats were classified into two groups based on protein supply during pregnancy: NP (regular protein diet, 17%) or LP diet (6%). Renal miRNA sequencing (miRNA-Seq) performed on the MiSeq platform, RT-qPCR of predicted target genes, immunohistochemistry, and morphological analysis of 17-DG NP and LP offspring were performed using previously described methods. RESULTS A total of 44 miRNAs, of which 19 were up and 25 downregulated, were identified in 17-DG LP fetuses compared to age-matched NP offspring. We selected 7 miRNAs involved in proliferation, differentiation, and cellular apoptosis. Our findings revealed reduced cell number and Six-2 and c-Myc immunoreactivity in metanephros cap (CM) and ureter bud (UB) in 17-DG LP fetuses. Ki-67 immunoreactivity in CM was 48% lesser in LP compared to age-matched NP fetuses. Conversely, in LP CM and UB, β-catenin was 154%, and 85% increased, respectively. Furthermore, mTOR immunoreactivity was higher in LP CM (139%) and UB (104%) compared to that in NP offspring. TGFβ-1 positive cells in the UB increased by approximately 30% in the LP offspring. Moreover, ZEB1 metanephros-stained cells increased by 30% in the LP offspring. ZEB2 immunofluorescence, although present in the entire metanephros, was similar in both experimental groups. CONCLUSIONS Maternal protein restriction changes the expression of miRNAs, mRNAs, and proteins involved in proliferation, differentiation, and apoptosis during renal development. Renal ontogenic dysfunction, caused by maternal protein restriction, promotes reduced reciprocal interaction between CM and UB; consequently, a programmed and expressive decrease in nephron number occurs in the fetus.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Bioscience Institute, São Paulo State University, Botucatu, SP, Brazil
| | - Adriana Zapparoli
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
9
|
Hanna MH, Dalla Gassa A, Mayer G, Zaza G, Brophy PD, Gesualdo L, Pesce F. The nephrologist of tomorrow: towards a kidney-omic future. Pediatr Nephrol 2017; 32:393-404. [PMID: 26961492 DOI: 10.1007/s00467-016-3357-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Omics refers to the collective technologies used to explore the roles and relationships of the various types of molecules that make up the phenotype of an organism. Systems biology is a scientific discipline that endeavours to quantify all of the molecular elements of a biological system. Therefore, it reflects the knowledge acquired by omics in a meaningful manner by providing insights into functional pathways and regulatory networks underlying different diseases. The recent advances in biotechnological platforms and statistical tools to analyse such complex data have enabled scientists to connect the experimentally observed correlations to the underlying biochemical and pathological processes. We discuss in this review the current knowledge of different omics technologies in kidney diseases, specifically in the field of pediatric nephrology, including biomarker discovery, defining as yet unrecognized biologic therapeutic targets and linking omics to relevant standard indices and clinical outcomes. We also provide here a unique perspective on the field, taking advantage of the experience gained by the large-scale European research initiative called "Systems Biology towards Novel Chronic Kidney Disease Diagnosis and Treatment" (SysKid). Based on the integrative framework of Systems biology, SysKid demonstrated how omics are powerful yet complex tools to unravel the consequences of diabetes and hypertension on kidney function.
Collapse
Affiliation(s)
- Mina H Hanna
- Department of Pediatrics, Kentucky Children's Hospital, University of Kentucky, Lexington, KY, USA
| | | | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Patrick D Brophy
- Pediatric Nephrology, University of Iowa Children's Hospital, Iowa City, IA, USA
| | - Loreto Gesualdo
- Dipartimento Emergenza e Trapianti di Organi (D.E.T.O), University of Bari, Bari, Italy
| | - Francesco Pesce
- Dipartimento Emergenza e Trapianti di Organi (D.E.T.O), University of Bari, Bari, Italy. .,Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Royal Brompton Hospital, Imperial College London, London, UK.
| |
Collapse
|
10
|
Jovanovic I, Zivkovic M, Kostic M, Krstic Z, Djuric T, Kolic I, Alavantic D, Stankovic A. Transcriptome-wide based identification of miRs in congenital anomalies of the kidney and urinary tract (CAKUT) in children: the significant upregulation of tissue miR-144 expression. J Transl Med 2016; 14:193. [PMID: 27364533 PMCID: PMC4929761 DOI: 10.1186/s12967-016-0955-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The genetic cause of most congenital anomalies of the kidney and urinary tract (CAKUT) cases remains unknown, therefore the novel approaches in searching for the common disease denominators are required. miRs regulate gene expression in humans and therefore have potentially therapeutic and biomarker properties. No studies thus far have attempted to explore the miRs in human CAKUT. We applied a new strategy to identify most specific miRs associated with CAKUT, in pediatric patients. METHODS Data from the whole genome expression, gathered from ureter tissue samples of 19 patients and 7 controls, were used for the bioinformatic prediction of miRs activity in CAKUT. We integrated microarray gene expression data and miR target predictions from multiple prediction algorithms using Co-inertia analysis (CIA) in conjunction with correspondence analysis and between group analysis, to produce a ranked list of miRs associated with CAKUT. The CIA included five different sequence based miR target prediction algorithms and the Co-expression Meta-analysis of miR Targets. For the experimental validation of expression of miRs identified by the CIA we used tissue from 36 CAKUT patients and 9 controls. The results of gene ontology (GO) analysis on co-expressed targets of miRs associated with CAKUT were used for the selection of putative biological processes relevant to CAKUT. RESULTS We identified 7 miRs with a potential role in CAKUT. The top ranked miRs from miRCos communities 4, 1 and 7 were chosen for experimental validation of expression in CAKUT tissue. The 5.7 fold increase of hsa-miR-144 expression in human tissue from CAKUT patients compared to controls (p = 0.005) was observed. From the GO we selected 7 biological processes that could contribute to CAKUT, which genes are potentially influenced by hsa-miR-144. The hsa-miR-200a, hsa-miR-183 and hsa-miR-375 weren't differentially expressed in CAKUT. CONCLUSIONS This study shows that integrative approach applied here was useful in identification of the miRs associated with CAKUT. The hsa-miR-144, first time identified in CAKUT, could be connected with biological processes crucial for normal development of kidney and urinary tract. Further functional analysis must follow to reveal the impact of hsa-miR-144 on CAKUT occurrence.
Collapse
Affiliation(s)
- Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Mirjana Kostic
- Nephrology and Urology Departments, University Children's Hospital, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Zoran Krstic
- Nephrology and Urology Departments, University Children's Hospital, Belgrade, Serbia.,Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Ivana Kolic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Dragan Alavantic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| |
Collapse
|
11
|
Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther 2016; 163:58-73. [PMID: 27108948 DOI: 10.1016/j.pharmthera.2016.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major renal disease associated with high mortality rate and increasing prevalence. Decades of research have suggested numerous chemical and biological agents with beneficial effects in AKI. In addition, cell therapy and molecular targeting have been explored for reducing kidney tissue damage and promoting kidney repair or recovery from AKI. Mechanistically, these approaches may mitigate oxidative stress, inflammation, cell death, and mitochondrial and other organellar damage, or activate cytoprotective mechanisms such as autophagy and pro-survival factors. However, none of these findings has been successfully translated into clinical treatment of AKI. In this review, we analyze these findings and propose experimental strategies for the identification of renoprotective agents or methods with clinical potential. Moreover, we propose the consideration of combination therapy by targeting multiple targets in AKI.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifang Song
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
12
|
Differentially expressed microRNAs in kidney biopsies from various subtypes of nephrotic children. Exp Mol Pathol 2015; 99:590-5. [PMID: 26481277 DOI: 10.1016/j.yexmp.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Our previous study showed a set of increased miRNAs in serum or urine from nephrotic syndrome children. In this study, we investigated the renal expression of these miRNAs in nephrotic children and explored their role in pathogenesis and as potential indicators to differentiate subtypes of kidney diseases. METHODS We enrolled 52 children with six different subtypes of nephropathy, and 8 normal kidney tissues were used as controls. RT-qPCR was used to quantify the expression of miR-191, miR-151-3p, miR-150, miR-30a-5p and miR-19b in renal tissues. RESULTS miR-191 and miR-151-3p exhibited significantly higher and lower intrarenal expression in all six subtypes of kidney diseases compared to controls. miR-19b was upregulated in three subtypes, and miR-30a-5p and miR-150 were downregulated in two and four subtypes, respectively. The intrarenal expression of miR-150 was significantly different between minimal change disease (MCD) and some other subtypes. The renal levels of these miRNAs correlated significantly with some renal functions and immune parameters. Bioinformatics showed that some target genes of these miRNAs were associated with immune and renal pathological changes. CONCLUSIONS These five miRNAs may be involved in the pathogenesis of nephropathy in children. miR-150 is a potential typing indictor to differentiate MCD from other nephropathy subtypes.
Collapse
|
13
|
miR-195 plays a role in steroid resistance of ulcerative colitis by targeting Smad7. Biochem J 2015; 471:357-67. [PMID: 26303523 DOI: 10.1042/bj20150095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
An imbalance in pro- and anti-inflammation is an important mechanism of steroid resistance in UC (ulcerative colitis), and miRNAs may participate in this process. The present study aimed to explore whether miRNAs play a role in the steroid resistance of UC by regulating gene expression of the inflammation signal pathway. SS (steroid-sensitive) patients, SR (steroid-resistant) patients and healthy individuals were recruited. In vivo miRNA profiles of serum samples showed that miR-195 was decreased significantly in the SR group compared with the SS group (P<0.05). This result was confirmed by qPCR (quantitative real-time PCR) and miRNA ISH (in situ hybridization) in serum and colon tissue samples. Online software was used to identify Smad7 mRNA as a potential target of miR-195. The direct interaction of miR-195 and Smad7 mRNA was investigated using a biotinylated miR-195 pull-down assay. Overexpression of a miR-195 precursor lowered cellular levels of Smad7 protein; conversely, antagonism of miR-195 enhanced Smad7 translation without disturbing Smad7 mRNA levels. A luciferase reporter assay revealed a repressive effect of miR-195 via a single Smad7 3'-UTR target site, and point mutation of this site prevented miR-195-induced repression of Smad7 translation. Furthermore, increased levels of miR-195 led to a decrease in c-Jun and p65 expression. In contrast, transfection with anti-miR-195 led to increased levels of c-Jun and p65 protein. The decrease in miR-195 led to an increase in Smad7 expression and corresponding up-regulation of p65 and the AP-1 (activator protein 1) pathway, which might explain the mechanism of steroid resistance in UC patients.
Collapse
|
14
|
Dart AB, Ruth CA, Sellers EA, Au W, Dean HJ. Maternal Diabetes Mellitus and Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in the Child. Am J Kidney Dis 2015; 65:684-91. [DOI: 10.1053/j.ajkd.2014.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
|
15
|
Raaijmakers A, Corveleyn A, Devriendt K, van Tienoven TP, Allegaert K, Van Dyck M, van den Heuvel L, Kuypers D, Claes K, Mekahli D, Levtchenko E. Criteria for HNF1B analysis in patients with congenital abnormalities of kidney and urinary tract. Nephrol Dial Transplant 2014; 30:835-42. [PMID: 25500806 DOI: 10.1093/ndt/gfu370] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/04/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital anomalies of kidneys and urinary tract (CAKUT) are the most predominant developmental disorders comprising ∼20-30% of all anomalies identified in the prenatal period. Mutations in hepatocyte nuclear factor 1-beta (HNF-1β) involved in the development of kidneys, liver, pancreas and urogenital tract are currently the most frequent monogenetic cause of CAKUT found in 10-30% of patients depending on screening policy and study design. We aimed to validate criteria for analysis of HNF1B in a prospective cohort of paediatric and adult CAKUT patients. METHODS We included CAKUT patients diagnosed in our paediatric and adult nephrology departments from January 2010 until April 2013 based on predefined screening criteria. Subjects presenting with at least one major renal criterion or one minor renal criterion combined with one or more extra-renal criteria in the personal history or a familial history of renal or extra-renal manifestations were considered eligible. RESULTS We prospectively screened 205 patients and detected HNF1B mutations in 10% [n = 20, 12 children, median age 4.2 (range 0-13.1) years and 8 adults, median age 34.8 (range 16.6-62) years]. We observed that bilateral renal anomaly, renal cysts from unknown origin, a combination of two major renal anomalies and hypomagnesaemia were predictive for finding HNF1B mutations (P < 0.001; P < 0.001; P = 0.004; P = 0.008, respectively). CONCLUSIONS We demonstrated that HNF1B mutations are responsible for ∼10% of CAKUT cases, both in children and in adults. Based on our results we propose adapted criteria for HNF1B analysis to reduce the screening costs without missing affected patients. These criteria should be reaffirmed in a larger validation cohort.
Collapse
Affiliation(s)
| | - Anniek Corveleyn
- Department of Human Genetics, UZ Leuven/KU Leuven, Leuven, Belgium
| | - Koen Devriendt
- Department of Human Genetics, UZ Leuven/KU Leuven, Leuven, Belgium
| | | | | | - Mieke Van Dyck
- Department of Pediatric Nephrology, UZ Leuven, Leuven, Belgium
| | | | - Dirk Kuypers
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Djalila Mekahli
- Department of Pediatric Nephrology, UZ Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
dos Santos Junior ACS, de Miranda DM, Simões e Silva AC. Congenital anomalies of the kidney and urinary tract: An embryogenetic review. ACTA ACUST UNITED AC 2014; 102:374-81. [DOI: 10.1002/bdrc.21084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
| | - Debora Marques de Miranda
- National Institute of Science and Technology-Molecular Medicine (INCT-MM), Universidade Federal de Minas Gerais (UFMG); Brazil
- Faculty of Medicine; Department of Pediatrics; Unit of Pediatric Nephrology; Pediatric Branch of the Interdisciplinary Laboratory of Medical Investigation, UFMG; Brazil
| | - Ana Cristina Simões e Silva
- National Institute of Science and Technology-Molecular Medicine (INCT-MM), Universidade Federal de Minas Gerais (UFMG); Brazil
- Faculty of Medicine; Department of Pediatrics; Unit of Pediatric Nephrology; Pediatric Branch of the Interdisciplinary Laboratory of Medical Investigation, UFMG; Brazil
| |
Collapse
|
17
|
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18:371-90. [PMID: 24533657 PMCID: PMC3943687 DOI: 10.1111/jcmm.12236] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma- and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Collapse
Affiliation(s)
- Leni Moldovan
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
18
|
Iudicibus SD, Lucafò M, Martelossi S, Pierobon C, Ventura A, Decorti G. MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases. World J Gastroenterol 2013; 19:7947-54. [PMID: 24307788 PMCID: PMC3848142 DOI: 10.3748/wjg.v19.i44.7947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 02/06/2023] Open
Abstract
In spite of the introduction in therapy of highly effective biological agents, glucocorticoids (GCs) are still employed to induce remission in moderate to severe inflammatory bowel diseases (IBD), but considerable inter-individual differences in their efficacy and side effects have been reported. The effectiveness of these drugs is indeed very variable and side effects, particularly severe in pediatric patients, are common and often unpredictable: the understanding of the complex gene regulation mediated by GCs could shed light on the causes of this variability. In this context, microRNAs (miRNAs) represent a new and promising field of research. miRNAs are small non-coding RNA molecules that suppress gene expression at post-transcriptional level, and are fine-tuning regulators of diverse biological processes, including the development and function of the immune system, apoptosis, metabolism and inflammation. Emerging data have implicated the deregulated expression of certain miRNA networks in the pathogenesis of autoimmune and inflammatory diseases, such as IBD. There is a great interest in the identification of the role of miRNAs in the modulation of pharmacological response; however, the association between miRNA and GC response in patients with IBD has not yet been evaluated in a prospective clinical study. The identification of miRNAs differently expressed as a consequence of GC treatment in comparison to diagnosis, represents an important innovative approach that could be translated into clinical practice. In this review we highlight the altered regulation of proteins involved in GC molecular mechanism by miRNAs, and their potential role as molecular markers useful for predicting in advance GC response.
Collapse
|