1
|
Wang N, Zhou L, Shao CY, Wang XT, Zhang N, Ma J, Hu HL, Wang Y, Qiu M, Shen Y. Potassium channel K ir 4.1 regulates oligodendrocyte differentiation via intracellular pH regulation. Glia 2022; 70:2093-2107. [PMID: 35775976 DOI: 10.1002/glia.24240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
In humans, loss-of-function mutations of Kcnj10 in SeSAME/EAST syndrome, which encodes the inwardly rectifying K+ channel 4.1 (Kir 4.1), causes progressive neurological decline. Despite its rich expression in oligodendrocyte (OL) lineage cells and an emerging link with demyelinating disease, the function of Kir 4.1 in OLs is unclear. Here we show a novel role of Kir 4.1 in OL development. Kir 4.1 expression is markedly greater in OLs than in OL precursor cells (OPCs), and the down-regulation of Kir 4.1 impairs OL maturation by affecting OPC differentiation. Interestingly, Kir 4.1 regulates the intracellular pH of OPCs and OLs via the Na+ /H+ exchanger, which underlies impeded OPC differentiation by Kir 4.1 inhibition. Furthermore, Kir 4.1 regulates GSK3β and SOX10, two molecules critical to OPC development. Collectively, our work opens a new avenue to understanding the functions of Kir 4.1 and intracellular pH in OLs.
Collapse
Affiliation(s)
- Na Wang
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhou
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Brain Science, Guizhou Institution of Higher Education, Zunyi Medical University, Zunyi, China
| | - Chong-Yu Shao
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Tai Wang
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan, China
| | - Jiao Ma
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan, China
| | - Hai-Lan Hu
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yin Wang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical University, Yinchuan, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Shen
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Cui X, Li X, He Y, Yu J, Dong N, Zhao RC. Slight up-regulation of Kir2.1 channel promotes endothelial progenitor cells to transdifferentiate into a pericyte phenotype by Akt/mTOR/Snail pathway. J Cell Mol Med 2021; 25:10088-10100. [PMID: 34592781 PMCID: PMC8572793 DOI: 10.1111/jcmm.16944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
It was shown that endothelial progenitor cells (EPCs) have bidirectional differentiation potential and thus perform different biological functions. The purpose of this study was to investigate the effects of slight up‐regulation of the Kir2.1 channel on EPC transdifferentiation and the potential mechanism on cell function and transformed cell type. First, we found that the slight up‐regulation of Kir2.1 expression promoted the expression of the stem cell stemness factors ZFX and NS and inhibited the expression of senescence‐associated β‐galactosidase. Further studies showed the slightly increased expression of Kir2.1 could also improve the expression of pericyte molecular markers NG2, PDGFRβ and Desmin. Moreover, adenovirus‐mediated Kir2.1 overexpression had an enhanced contractile response to norepinephrine of EPCs. These results suggest that the up‐regulated expression of the Kir2.1 channel promotes EPC transdifferentiation into a pericyte phenotype. Furthermore, the mechanism of EPC transdifferentiation to mesenchymal cells (pericytes) was found to be closely related to the channel functional activity of Kir2.1 and revealed that this channel could promote EPC EndoMT by activating the Akt/mTOR/Snail signalling pathway. Overall, this study suggested that in the early stage of inflammatory response, regulating the Kir2.1 channel expression affects the biological function of EPCs, thereby determining the maturation and stability of neovascularization.
Collapse
Affiliation(s)
- Xiaodong Cui
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Xiaoxia Li
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Yanting He
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Jie Yu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, China
| | - Naijun Dong
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- Department of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Manis AD, Hodges MR, Staruschenko A, Palygin O. Expression, localization, and functional properties of inwardly rectifying K + channels in the kidney. Am J Physiol Renal Physiol 2020; 318:F332-F337. [PMID: 31841387 PMCID: PMC7052651 DOI: 10.1152/ajprenal.00523.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Inwardly rectifying K+ (Kir) channels are expressed in multiple organs and cell types and play critical roles in cellular function. Most notably, Kir channels are major determinants of the resting membrane potential and K+ homeostasis. The renal outer medullary K+ channel (Kir1.1) was the first renal Kir channel identified and cloned in the kidney over two decades ago. Since then, several additional members, including classical and ATP-regulated Kir family classes, have been identified to be expressed in the kidney and to contribute to renal ion transport. Although the ATP-regulated Kir channel class remains the most well known due to severe pathological phenotypes associated with their mutations, progress is being made in defining the properties, localization, and physiological functions of other renal Kir channels, including those localized to the basolateral epithelium. This review is primarily focused on the current knowledge of the expression and localization of renal Kir channels but will also briefly describe their proposed functions in the kidney.
Collapse
Affiliation(s)
- Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
4
|
Liu Y, Wang K. Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. Handb Exp Pharmacol 2019; 260:187-205. [PMID: 31820177 DOI: 10.1007/164_2019_333] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ion channels are macromolecular proteins that form water-filled pores in cell membranes and they are critical for a variety of physiological and pharmacological functions. Dysfunctional ion channels can cause diseases known as channelopathies. Ion channels are encoded by approximately 400 genes, representing the second largest class of proven drug targets for therapeutic areas including neuropsychiatric disorders, cardiovascular and metabolic diseases, immunological diseases, nephrological diseases, gastrointestinal diseases, pulmonary/respiratory diseases, and many cancers. With more ion channel structures are being solved and functional robust assays are being developed, there are tremendous opportunities for identifying specific modulators targeting ion channels for new therapy.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China.
| |
Collapse
|
5
|
OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant. Proc Natl Acad Sci U S A 2018; 115:3840-3845. [PMID: 29581290 DOI: 10.1073/pnas.1802339115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K+ channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K+ channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.
Collapse
|
6
|
Agasid MT, Wang X, Huang Y, Janczak CM, Bränström R, Saavedra SS, Aspinwall CA. Expression, purification, and electrophysiological characterization of a recombinant, fluorescent Kir6.2 in mammalian cells. Protein Expr Purif 2018; 146:61-68. [PMID: 29409958 DOI: 10.1016/j.pep.2018.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 11/27/2022]
Abstract
The inwardly rectifying K+ (Kir) channel, Kir6.2, plays critical roles in physiological processes in the brain, heart, and pancreas. Although Kir6.2 has been extensively studied in numerous expression systems, a comprehensive description of an expression and purification protocol has not been reported. We expressed and characterized a recombinant Kir6.2, with an N-terminal decahistidine tag, enhanced green fluorescent protein (eGFP) and deletion of C-terminal 26 amino acids, in succession, denoted eGFP-Kir6.2Δ26. eGFP-Kir6.2Δ26 was expressed in HEK293 cells and a purification protocol developed. Electrophysiological characterization showed that eGFP-Kir6.2Δ26 retains native single channel conductance (64 ± 3.3 pS), mean open times (τ1 = 0.72 ms, τ2 = 15.3 ms) and ATP affinity (IC50 = 115 ± 25 μM) when expressed in HEK293 cells. Detergent screening using size exclusion chromatography (SEC) identified Fos-choline-14 (FC-14) as the most suitable surfactant for protein solubilization, as evidenced by maintenance of the native tetrameric structure in SDS-PAGE and western blot analysis. A two-step scheme using Co2+-metal affinity chromatography and SEC was implemented for purification. Purified protein activity was assessed by reconstituting eGFP-Kir6.2Δ26 in black lipid membranes (BLMs) composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), l-α-phosphatidylinositol-4,5-bisphosphate (PIP2) in a 89.5:10:0.5 mol ratio. Reconstituted eGFP-Kir6.2Δ26 displayed similar single channel conductance (61.8 ± 0.54 pS) compared to eGFP-Kir6.2Δ26 expressed in HEK293 membranes; however, channel mean open times increased (τ1 = 7.9 ms, τ2 = 61.9 ms) and ATP inhibition was significantly reduced for eGFP-Kir6.2Δ26 reconstituted into BLMs (IC50 = 3.14 ± 0.4 mM). Overall, this protocol should be foundational for the production of purified Kir6.2 for future structural and biochemical studies.
Collapse
Affiliation(s)
- Mark T Agasid
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Xuemin Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Yiding Huang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Colleen M Janczak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Robert Bränström
- Department of Molecular Medicine and Surgery, Karolinksa Institutet, Stockholm, Sweden
| | - S Scott Saavedra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Craig A Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States; BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
7
|
Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 2017; 127:161-172. [PMID: 28716449 DOI: 10.1016/j.neuropharm.2017.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022]
Abstract
Inwardly rectifying K+ (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K+ ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K+-selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca2+-activated and voltage-gated K+ channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
8
|
Song IW, Sung CC, Chen CH, Cheng CJ, Yang SS, Chou YC, Yang JH, Chen YT, Wu JY, Lin SH. Novel susceptibility gene for nonfamilial hypokalemic periodic paralysis. Neurology 2016; 86:1190-8. [PMID: 26935888 DOI: 10.1212/wnl.0000000000002524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/10/2015] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To identify susceptibility genes to nonfamilial hypokalemic periodic paralysis (hypoKPP) consisting of thyrotoxic periodic paralysis (TPP) and sporadic periodic paralysis (SPP) and explore the potential pathogenic mechanisms. METHODS We enrolled patients with nonfamilial hypoKPP not carrying mutations in CACNA1S, SCN4A, KCNJ18, or KCNJ2 and conducted genome-wide association analyses comparing 77 patients with TPP and 32 patients with SPP with 1,730 controls in a Han Chinese population in Taiwan. Replication was performed using an independent Han Chinese cohort of 50 patients with TPP, 22 patients with SPP, and 376 controls. RESULTS We identified 4 single nucleotide polymorphisms (rs312692, rs312736, rs992072, rs393743) located about 100 Kb downstream of KCNJ2 on chromosome 17q24.3 associated with both TPP and SPP reaching genome-wide significance (p < 9 × 10(-8)). rs312736 was mapped to CTD-2378E21.1, a lincRNA, and direct sequencing revealed an exon variant rs312732 (risk allele A) highly associated with both TPP (p = 1.81 × 10(-12); odds ratio [OR] 3.22 [95% confidence interval (CI) 2.36-4.40]) and SPP (p = 8.6 × 10(-12); OR 5.4 [95% CI 3.17-9.18]). Overexpression of C (normal allele) CTD-2378E21.1 in C2C12 skeletal muscle cell, but not A (risk allele) CTD-2378E21.1, showed significantly decreased Kcnj2 expression, indicating A-type CTD-2378E21.1 has lost the ability to regulate Kcnj2. CONCLUSIONS Our study reveals a shared genetic predisposition between TPP and SPP. CTD-2378E21.1 is a novel disease-associated gene for both TPP and SPP and may negatively regulate KCNJ2 expression. These findings provide new insights into the pathogenesis of nonfamilial hypoKPP.
Collapse
Affiliation(s)
- I-Wen Song
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Chih-Chien Sung
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Chien-Hsiun Chen
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Chih-Jen Cheng
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Sung-Sen Yang
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Yi-Chun Chou
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Jenn-Hwai Yang
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Yuan-Tsong Chen
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan
| | - Jer-Yuarn Wu
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan.
| | - Shih-Hua Lin
- From the Institute of Biomedical Sciences (I.-W.S., C.-H.C., Y.-C.C., J.-H.Y., Y.-T.C., J.-Y.W.), Academia Sinica; Graduate Institute of Life Science (I.-W.S.), Division of Nephrology, Department of Medicine, Tri-Service General Hospital (C.-C.S., C.-J.C., S.-S.Y., S.-H.L.), and Graduate Institute of Medical Science (C.-C.S., S.-S.Y., S.-H.L.), National Defense Medical Center, Taipei, Taiwan; Department of Pediatrics (Y.-T.C.), Duke University Medical Center, Durham, NC; and Graduate Institute of Chinese Medical Science (J.-Y.W.), China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Seyberth HW. Pathophysiology and clinical presentations of salt-losing tubulopathies. Pediatr Nephrol 2016; 31:407-18. [PMID: 26178649 DOI: 10.1007/s00467-015-3143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
At least three renal tubular segments are involved in the pathophysiology of salt-losing tubulopathies (SLTs). Whether the pathogenesis starts either in the thick ascending limb of the loop of Henle (TAL) or in the distal convoluted tubule (DCT), it is the function of the downstream-localized aldosterone sensitive distal tubule (ASDT) to contribute to the adaptation process. In isolated TAL defects (loop disorders) ASDT adaptation is supported by upregulation of DCT, whereas in DCT disorders the ASDT is complemented by upregulation of TAL function. This upregulation has a major impact on the clinical presentation of SLT patients. Taking into account both the symptoms and signs of primary tubular defect and of the secondary reactions of adaptation, a clinical diagnosis can be made that eventually leads to an appropriate therapy. In addition to salt wasting, as occurs in all SLTs, characteristic features of loop disorders are hypo- or isosthenuric polyuria and hypercalciuria, whereas characteristics of DCT disorders are hypokalemia and (symptomatic) hypomagnesemia. In both SLT categories, replacement of urinary losses is the primary goal of treatment. In loop disorders COX inhibitors are also recommended to mitigate polyuria, and in DCT disorders magnesium supplementation is essential for effective treatment. Of note, the combination of a salt- and potassium-rich diet together with an adequate fluid intake is always the basis of long-term treatment in all SLTs.
Collapse
Affiliation(s)
- Hannsjörg W Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany. .,, Lazarettgarten 23, 76829, Landau, Germany.
| |
Collapse
|
10
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
11
|
Squecco R, Sassoli C, Garella R, Chellini F, Idrizaj E, Nistri S, Formigli L, Bani D, Francini F. Inhibitory effects of relaxin on cardiac fibroblast-to-myofibroblast transition: an electrophysiological study. Exp Physiol 2015; 100:652-66. [PMID: 25786395 DOI: 10.1113/ep085178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Fibroblast-to-myofibroblast transition is a key mechanism in the reparative response to tissue damage, but myofibroblast persistence in the wound leads to fibrosis and organ failure. The role of relaxin as an antifibrotic agent capable of counteracting the acquisition of biophysical features of differentiated myofibroblasts deserves further investigation. What is the main finding and its importance? Electrophysiological analysis showed that relaxin, administered during profibrotic treatment, hyperpolarizes the membrane potential and attenuates delayed rectifier and inwardly rectifying K(+) currents, which usually increase in the transition to myofibroblasts. These findings provide further clues to the therapeutic potential of relaxin in fibrosis. The hormone relaxin (RLX) is produced by the heart and may be involved in endogenous mechanisms of cardiac protection against ischaemic injury and fibrosis. Recent findings in cultured cardiac stromal cells suggest that RLX can inhibit fibroblast-to-myofibroblast transition, thereby counteracting fibrosis. In order to explore its efficiency as an antifibrotic agent further, we designed the present study to investigate whether RLX may influence the electrophysiological events associated with differentiation of cardiac stromal cells to myofibroblasts. Primary cardiac proto-myofibroblasts and NIH/3T3 fibroblasts were induced to myofibroblasts by transforming growth factor-β1, and the electrophysiological features of both cell populations were investigated by whole-cell patch clamp. We demonstrated that proto-myofibroblasts and myofibroblasts express different membrane passive properties and K(+) currents. Here, we have shown, for the first time, that RLX (100 ng ml(-1) ) significantly reduced both voltage- and Ca(2+) -dependent delayed-rectifier and inward-rectifying K(+) currents that are typically increased in myofibroblasts compared with proto-myofibroblasts, suggesting that this hormone can antagonize the biophysical effects of transforming growth factor-β1 in inducing myofibroblast differentiation. These newly recognized effects of RLX on the electrical properties of cardiac stromal cell membrane correlate well with its well-known ability to suppress myofibroblast differentiation, further supporting the possibility that RLX may be used for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy.,Interuniversity Institute of Myology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Chiara Sassoli
- Interuniversity Institute of Myology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy.,Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Rachele Garella
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Flaminia Chellini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Silvia Nistri
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Lucia Formigli
- Interuniversity Institute of Myology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy.,Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Daniele Bani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Fabio Francini
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy.,Interuniversity Institute of Myology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| |
Collapse
|
12
|
Horn S, Naidus E, Alper SL, Danziger J. Cesium-associated hypokalemia successfully treated with amiloride. Clin Kidney J 2015; 8:335-8. [PMID: 26034598 PMCID: PMC4440464 DOI: 10.1093/ckj/sfv017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Self-treatment of cancer with cesium chloride, despite proven lack of efficacy, continues to produce serious adverse effects. Among these is hypokalemia predisposing to life-threatening arrhythmia. The mechanism of cesium-associated hypokalemia (CAH) has not been described. We report urinary potassium wasting responsive to amiloride therapy in a cancer patient with CAH, and discuss possible mechanisms.
Collapse
Affiliation(s)
- Sarah Horn
- Beth Israel Deaconess Medical Center , Harvard Medical School , Boston, MA , USA
| | - Elliot Naidus
- Beth Israel Deaconess Medical Center , Harvard Medical School , Boston, MA , USA
| | - Seth L Alper
- Beth Israel Deaconess Medical Center , Harvard Medical School , Boston, MA , USA
| | - John Danziger
- Beth Israel Deaconess Medical Center , Harvard Medical School , Boston, MA , USA
| |
Collapse
|