1
|
Donadelli R, Sinha A, Bagga A, Noris M, Remuzzi G. HUS and TTP: traversing the disease and the age spectrum. Semin Nephrol 2023; 43:151436. [PMID: 37949684 DOI: 10.1016/j.semnephrol.2023.151436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenia purpura (TTP) are rare diseases sharing a common pathological feature, thrombotic microangiopathy (TMA). TMA is characterized by microvascular thrombosis with consequent thrombocytopenia, microangiopathic hemolytic anemia and/or multiorgan dysfunction. In the past, the distinction between HUS and TTP was predominantly based on clinical grounds. However, clinical presentation of the two syndromes often overlaps and, the differential diagnosis is broad. Identification of underlying pathogenic mechanisms has enabled the classification of these syndromes on a molecular basis: typical HUS caused by Shiga toxin-producing Escherichia coli (STEC-HUS); atypical HUS or complement-mediated TMA (aHUS/CM-TMA) associated with genetic or acquired defects leading to dysregulation of the alternative pathway (AP) of complement; and TTP that results from a severe deficiency of the von Willebrand Factor (VWF)-cleaving protease, ADAMTS13. The etiology of TMA differs between pediatric and adult patients. Childhood TMA is chiefly caused by STEC-HUS, followed by CM-TMA and pneumococcal HUS (Sp-HUS). Rare conditions such as congenital TTP (cTTP), vitamin B12 metabolism defects, and coagulation disorders (diacylglycerol epsilon mutation) present as TMA chiefly in children under 2 years of age. In contrast secondary causes and acquired ADAMT13 deficiency are more common in adults. In adults, compared to children, diagnostic delays are more frequent due to the wide range of differential diagnoses. In this review we focus on the three major forms of TMA, STEC-HUS, aHUS and TTP, outlining the clinical presentation, diagnosis and management of the affected patients, to help highlight the salient features and the differences between adult and pediatric patients which are relevant for management.
Collapse
Affiliation(s)
- Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy.
| |
Collapse
|
2
|
Tanné C, Javouhey E, Boyer O, Recher M, Allain-Launay E, Monet-Didailler C, Rouset-Rouvière C, Ryckewaert A, Nobili F, Gindre FA, Rambaud J, Duncan A, Berthiller J, Bacchetta J, Sellier-Leclerc AL. Cardiac involvement in pediatric hemolytic uremic syndrome. Pediatr Nephrol 2022; 37:3215-3221. [PMID: 35286451 DOI: 10.1007/s00467-022-05427-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Cardiac involvement is a known but rare complication of pediatric hemolytic uremic syndrome (HUS). We conducted a nationwide observational, retrospective case-control study describing factors associated with the occurrence of myocarditis among HUS patients. METHODS Cases were defined as hospitalized children affected by any form of HUS with co-existent myocarditis in 8 French Pediatric Intensive Care Units (PICU) between January 2007 and December 2018. Control subjects were children, consecutively admitted with any form of HUS without coexistent myocarditis, at a single PICU in Lyon, France, during the same time period. RESULTS A total of 20 cases of myocarditis were reported among 8 PICUs, with a mean age of 34.3 ± 31.9 months; 66 controls were identified. There were no differences between the two groups concerning the season and the typical, Shiga toxin-producing Escherichia coli (STEC-HUS), or atypical HUS (aHUS). Maximal leukocyte count was higher in the myocarditis group (29.1 ± 16.3G/L versus 21.0 ± 9.9G/L, p = 0.04). The median time between admission and first cardiac symptoms was of 3 days (range 0-19 days), and 4 patients displayed myocarditis at admission. The fatality rate in the myocarditis group was higher than in the control group (40.0% versus 1.5%, p < 0.001). Thirteen (65%) children from the myocarditis group received platelet transfusion compared to 19 (29%) in the control group (p = 0.03). CONCLUSION Our study confirms that myocarditis is potentially lethal and identifies higher leukocyte count and platelet transfusion as possible risk factors of myocarditis. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Corentin Tanné
- Department of Pediatric Nephrology, Hopital Femme-Mere-Enfant, Lyon, France.,Service de Pédiatrie Et Néonatalogie, Hôpitaux du Pays du Mont Blanc, Sallanches, France
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfants, Hospices Civils of Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Olivia Boyer
- Service de Néphrologie Pédiatrique, Centres de Référence MARHEA Et MAT, Hôpital Necker-Enfants Maladies, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut IMAGINE, INSERM U1163, Université de Paris, Paris, France
| | - Morgan Recher
- CHU Lille, Department of Paediatric Intensive Care Unit, Jeanne de Flandre Hospital, 59000, Lille, France
| | | | - Catherine Monet-Didailler
- Service de Pédiatrie, Unité de Néphrologie Pédiatrique, CHU de Bordeaux, France.,Service de Pédiatrie, Centre Hospitalier de La Côte Basque, Bayonne, France
| | | | | | | | | | - Jérôme Rambaud
- Service de Réanimation Pédiatrique Et Néonatal, Hôpital Armand-Trousseau, assistance publique des Hôpitaux de Paris (APHP), Sorbonne Université, Paris, France
| | - Anita Duncan
- Department of Pediatric Nephrology, Hopital Femme-Mere-Enfant, Lyon, France
| | - Julien Berthiller
- Service d'Epidémiologie Et de Recherche Clinique. Pôle de Santé Publique Des Hospices Civils de Lyon, Lyon, France
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Hopital Femme-Mere-Enfant, Lyon, France.,Université de Lyon, Lyon, France
| | | |
Collapse
|
3
|
Erythropoietin in children with hemolytic uremic syndrome: a pilot randomized controlled trial. Pediatr Nephrol 2022; 37:2383-2392. [PMID: 35166922 DOI: 10.1007/s00467-022-05474-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND The efficacy of recombinant human erythropoietin (rHuEPO) in sparing red blood cell (RBC) transfusions in children with hemolytic uremic syndrome related to Shiga toxin-producing Escherichia coli (STEC-HUS) is uncertain. METHODS We conducted a pilot randomized controlled open trial between December 2018 and January 2021. Children were randomized to the intervention (subcutaneous rHuEPO 50 U/kg three times weekly until discharge + RBC transfusion if hemoglobin ≤ 7 g/dL and/or hemodynamic instability) or to the control arm (RBC transfusion if hemoglobin ≤ 7 g/dL and/or hemodynamic instability). Primary outcome was the number of RBC transfusions received during hospitalization. Secondary outcomes were to explore whether baseline EPO levels were adequate to the degree of anemia, to correlate selected acute phase parameters with the number of RBC transfusions, and to assess possible adverse events. RESULTS Twelve patients per arm were included; they were comparable at recruitment and throughout the disease course. Median number of RBC transfusions was similar between groups (1.5, p = 0.76). Most patients had baseline EPO levels adequate to the degree of anemia, which did not correlate with the number of transfusions (r = 0.19, p = 0.44). Conversely, baseline (r = 0.73, p = 0.032) and maximum lactic dehydrogenase levels (r = 0.78, p = 0.003), creatinine peak (r = 0.71, p = 0.03) and dialysis duration (r = 0.7, p = 0.04) correlated significantly with RBC requirements. No side effects were recorded. CONCLUSION In children with STEC-HUS, the administration of rHuEPO did not reduce the number of RBC transfusions. Larger studies addressing higher doses and similar severity of kidney failure at rHuEPO initiation (e.g. at start of dialysis) are warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03776851. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
4
|
A novel model forecasting perioperative red blood cell transfusion. Sci Rep 2022; 12:16127. [PMID: 36167791 PMCID: PMC9514715 DOI: 10.1038/s41598-022-20543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/14/2022] [Indexed: 01/28/2023] Open
Abstract
We aimed to establish a predictive model assessing perioperative blood transfusion risk using a nomogram. Clinical data for 97,443 surgery patients were abstracted from the DATADRYAD website; approximately 75% of these patients were enrolled in the derivation cohort, while approximately 25% were enrolled in the validation cohort. Multivariate logical regression was used to identify predictive factors for transfusion. Receiver operating characteristic (ROC) curves, calibration plots, and decision curves were used to assess the model performance. In total, 5888 patients received > 1 unit of red blood cells; the total transfusion rate was 6.04%. Eight variables including age, race, American Society of Anesthesiologists' Physical Status Classification (ASA-PS), grade of kidney disease, type of anaesthesia, priority of surgery, surgery risk, and an 18-level variable were included. The nomogram achieved good concordance indices of 0.870 and 0.865 in the derivation and validation cohorts, respectively. The Youden index identified an optimal cut-off predicted probability of 0.163 with a sensitivity of 0.821 and a specificity of 0.744. Decision curve (DCA) showed patients had a standardized net benefit in the range of a 5–60% likelihood of transfusion risk. In conclusion, a nomogram model was established to be used for risk stratification of patients undergoing surgery at risk for blood transfusion. The URLs of web calculators for our model are as follows: http://www.empowerstats.net/pmodel/?m=11633_transfusionpreiction.
Collapse
|
5
|
Travert B, Rafat C, Mariani P, Cointe A, Dossier A, Coppo P, Joseph A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: Specificities of Adult Patients and Implications for Critical Care Management. Toxins (Basel) 2021; 13:306. [PMID: 33925836 PMCID: PMC8145702 DOI: 10.3390/toxins13050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/28/2023] Open
Abstract
Shiga toxin-producing Escherichia coli-associated hemolytic uremic syndrome (STEC-HUS) is a form of thrombotic microangiopathy secondary to an infection by an enterohemorrhagic E. coli. Historically considered a pediatric disease, its presentation has been described as typical, with bloody diarrhea at the forefront. However, in adults, the clinical presentation is more diverse and makes the early diagnosis hazardous. In this review, we review the epidemiology, most important outbreaks, physiopathology, clinical presentation and prognosis of STEC-HUS, focusing on the differential features between pediatric and adult disease. We show that the clinical presentation of STEC-HUS in adults is far from typical and marked by the prevalence of neurological symptoms and a poorer prognosis. Of note, we highlight knowledge gaps and the need for studies dedicated to adult patients. The differences between pediatric and adult patients have implications for the treatment of this disease, which remains a public health threat and lack a specific treatment.
Collapse
Affiliation(s)
- Benoit Travert
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France; (B.T.); (A.D.)
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, 75012 Paris, France; (C.R.); (P.C.)
| | - Cédric Rafat
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, 75012 Paris, France; (C.R.); (P.C.)
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Patricia Mariani
- Service de Microbiologie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France; (P.M.); (A.C.)
| | - Aurélie Cointe
- Service de Microbiologie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France; (P.M.); (A.C.)
| | - Antoine Dossier
- Service de Médecine Interne, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France; (B.T.); (A.D.)
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, 75012 Paris, France; (C.R.); (P.C.)
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, 75012 Paris, France; (C.R.); (P.C.)
- Service d’Hématologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Adrien Joseph
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine, 75012 Paris, France; (C.R.); (P.C.)
- Médecine Intensive Réanimation, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université de Paris, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
6
|
Loos S, Oh J, van de Loo L, Kemper MJ, Blohm M, Schild R. Hemoconcentration and predictors in Shiga toxin-producing E. coli-hemolytic uremic syndrome (STEC-HUS). Pediatr Nephrol 2021; 36:3777-3783. [PMID: 34046736 PMCID: PMC8497454 DOI: 10.1007/s00467-021-05108-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hemoconcentration has been identified as a risk factor for a complicated course in Shiga toxin-producing E. coli-hemolytic uremic syndrome (STEC-HUS). This single-center study assesses hemoconcentration and predictors at presentation in STEC-HUS treated from 2009-2017. METHODS Data of 107 pediatric patients with STEC-HUS were analyzed retrospectively. Patients with mild HUS (mHUS, definition: max. serum creatinine < 1.5 mg/dL and no major neurological symptoms) were compared to patients with severe HUS (sHUS, definition: max. serum creatinine ≥ 1.5 mg/dL ± major neurological symptoms). Additionally, predictors of complicated HUS (dialysis ± major neurological symptoms) were analyzed. RESULTS Sixteen of one hundred seven (15%) patients had mHUS. Admission of patients with sHUS occurred median 2 days earlier after the onset of symptoms than in patients with mHUS. On admission, patients with subsequent sHUS had significantly higher median hemoglobin (9.5 g/dL (3.6-15.7) vs. 8.5 g/dL (4.2-11.5), p = 0.016) than patients with mHUS. The product of hemoglobin (g/dL) and LDH (U/L) (cutoff value 13,302, sensitivity 78.0%, specificity of 87.5%) was a predictor of severe vs. mild HUS. Creatinine (AUC 0.86, 95% CI 0.79-0.93) and the previously published score hemoglobin (g/dL) + 2 × creatinine (mg/dL) showed a good prediction for development of complicated HUS (AUC 0.87, 95% CI 0.80-0.93). CONCLUSIONS At presentation, patients with subsequent severe STEC-HUS had a higher degree of hemoconcentration. This underlines that fluid loss or reduced fluid intake/administration may be a risk factor for severe HUS. The good predictive value of the score hemoglobin (g/dL) + 2 × creatinine (mg/dL) for complicated HUS could be validated in our cohort. A higher resolution version of the Graphical abstract is available as Supplementary Information.
Collapse
Affiliation(s)
- Sebastian Loos
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Jun Oh
- University Medical Center Hamburg-Eppendorf, University Children’s Hospital, Martinistrasse 52, 20246 Hamburg, Germany ,University Children’s Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura van de Loo
- University Medical Center Hamburg-Eppendorf, University Children’s Hospital, Martinistrasse 52, 20246 Hamburg, Germany
| | - Markus J. Kemper
- Department of Pediatrics, Asklepios Klink Nord, Hamburg, Germany
| | - Martin Blohm
- University Medical Center Hamburg-Eppendorf, University Children’s Hospital, Martinistrasse 52, 20246 Hamburg, Germany
| | - Raphael Schild
- University Medical Center Hamburg-Eppendorf, University Children’s Hospital, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins (Basel) 2020; 12:E67. [PMID: 31973203 PMCID: PMC7076748 DOI: 10.3390/toxins12020067] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023] Open
Abstract
The severity of human infection by one of the many Shiga toxin-producing Escherichia coli (STEC) is determined by a number of factors: the bacterial genome, the capacity of human societies to prevent foodborne epidemics, the medical condition of infected patients (in particular their hydration status, often compromised by severe diarrhea), and by our capacity to devise new therapeutic approaches, most specifically to combat the bacterial virulence factors, as opposed to our current strategies that essentially aim to palliate organ deficiencies. The last major outbreak in 2011 in Germany, which killed more than 50 people in Europe, was evidence that an effective treatment was still lacking. Herein, we review the current knowledge of STEC virulence, how societies organize the prevention of human disease, and how physicians treat (and, hopefully, will treat) its potentially fatal complications. In particular, we focus on STEC-induced hemolytic and uremic syndrome (HUS), where the intrusion of toxins inside endothelial cells results in massive cell death, activation of the coagulation within capillaries, and eventually organ failure.
Collapse
Affiliation(s)
- Adrien Joseph
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Aurélie Cointe
- Department of Microbiology, AP-HP, Hôpital Robert Debré, F-75019 Paris, France; (A.C.); (P.M.K.)
| | | | - Cédric Rafat
- Department of Nephrology, AP-HP, Hôpital Tenon, F-75020 Paris, France; (A.J.); (C.R.)
| | - Alexandre Hertig
- Department of Renal Transplantation, Sorbonne Université, AP-HP, Hôpital Pitié Salpêtrière, F-75013 Paris, France
| |
Collapse
|
8
|
Eculizumab in the treatment of Shiga toxin haemolytic uraemic syndrome. Pediatr Nephrol 2019; 34:1485-1492. [PMID: 30058046 PMCID: PMC6660499 DOI: 10.1007/s00467-018-4025-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
Haemolytic uraemic syndrome (HUS) remains a leading cause of paediatric acute kidney injury (AKI). Haemolytic uraemic syndrome is characterised by the triad of microangiopathic haemolytic anaemia, thrombocytopenia and AKI. In ~ 90% of cases, HUS is a consequence of infection with Shiga toxin-producing E. coli (STEC), most commonly serotype O157:H7. Acute mortality from STEC-HUS is now less than 5%; however, there is significant long-term renal morbidity in one third of survivors. Currently, no specific treatment exists for STEC-HUS. There is growing interest in the role of complement in the pathogenesis of STEC-HUS due to the discovery of inherited and acquired dysregulation of the alternative complement system in the closely related disorder, atypical HUS (aHUS). The treatment of aHUS has been revolutionised by the introduction of the anti-C5 monoclonal antibody, eculizumab. However, the role of complement and anti-complement therapy in STEC-HUS remains unclear. Herein, we review the current evidence of the role of complement in STEC-HUS focusing on the use of eculizumab in this disease.
Collapse
|
9
|
Walsh PR, Johnson S. Treatment and management of children with haemolytic uraemic syndrome. Arch Dis Child 2018; 103:285-291. [PMID: 28899876 DOI: 10.1136/archdischild-2016-311377] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 11/03/2022]
Abstract
Haemolytic uraemic syndrome (HUS), comprising microangiopathic haemolytic anaemia, thrombocytopaenia and acute kidney injury, remains the leading cause of paediatric intrinsic acute kidney injury, with peak incidence in children aged under 5 years. HUS most commonly occurs following infection with Shiga toxin-producing Escherichia coli (STEC-HUS). Additionally, HUS can occur as a result of inherited or acquired dysregulation of the alternative complement cascade (atypical HUS or aHUS) and in the setting of invasive pneumococcal infection. The field of HUS has been transformed by the discovery of the central role of complement in aHUS and the dawn of therapeutic complement inhibition. Herein, we address these three major forms of HUS in children, review the latest evidence for their treatment and discuss the management of STEC infection from presentation with bloody diarrhoea, through to development of fulminant HUS.
Collapse
Affiliation(s)
- Patrick R Walsh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,National Renal Complement Therapeutic Centre, Newcastle upon Tyne, UK
| | - Sally Johnson
- National Renal Complement Therapeutic Centre, Newcastle upon Tyne, UK.,Department of Paediatric Nephrology, Great North Children's Hospital, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|