1
|
Abstract
The incidence of kidney stones in children is increasing. Approximately two-thirds of pediatric cases have a predisposing cause. Children with recurrent kidney stones have an increased higher risk of developing chronic kidney. A complete metabolic workup should be performed. Ultrasound examination is the initial imaging modality recommended for all children with suspected nephrolithiasis. A general dietary recommendation includes high fluid consumption, dietary salt restriction, and increased intake of vegetables and fruits. Depending on size and location of the stone, surgical intervention may be necessary. Multidisciplinary management is key to successful treatment and prevention.
Collapse
Affiliation(s)
- Larisa Kovacevic
- Department of Pediatric Urology, Michigan State University and Central Michigan University, Stone Clinic, Children's Hospital of Michigan, 3901 Beaubien Boulevard, Detroit 48201, MI, USA.
| |
Collapse
|
2
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
3
|
Yuan C, Jin X, He Y, Liu Y, Xiang L, Wang K. Association of dietary patterns with gut microbiota in kidney stone and non-kidney stone individuals. Urolithiasis 2022; 50:389-399. [PMID: 35460343 DOI: 10.1007/s00240-022-01325-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/02/2022] [Indexed: 02/05/2023]
Abstract
The dietary patterns are closely associated with gut microbiota, which has been proved associated with kidney stones. To assess the association among the dietary patterns, gut microbiota, and kidney stones, patients with calcium oxalate stones and participants without kidney stones were recruited in West China Hospital and were divided into the low nephrolithiasis risk (LNR) and high nephrolithiasis risk (HNR) dietary pattern group based on the results of food frequency questionnaires. The genomic DNA of the fecal samples were extracted for 16S ribosomal RNA gene sequencing. The non-kidney stone (NS) group comprised 39 LNR and 45 HNR individuals, while the kidney stone (KS) group consisted of 19 LNR and 50 HNR individuals. The distribution of oxalate in urine (p < 0.01) but not calcium (p = 0.741) was significantly varied among the four groups. Significant difference was found in the dietary patterns of people with KS and NS controls (X2 = 5.744, p = 0.017). Forty-six discriminative bacteria were found among different dietary patterns groups in KS patients and NS controls. Not only gut bacteria such as Pseudomonas, Sphingomonas, Hydrogenoanaerobacterium, Faecalitalea, etc., but also metabolic pathways associated with inflammation, lipid, and mineral metabolism were found more abundant in KS patients with HNR dietary pattern. It is noteworthy that g__Prevotellaceae_UCG_001, g__hgcI_clade, and g__Bradyrhizobium were negatively related to water intake but instead had a positive correlation with salt and meat intake. Our study revealed that gut microbiota with significantly different abundance existed in the HNR dietary patterns compared to the LNR counterparts in both calcium oxalate KS and NS individuals. The dietary patterns may affect the prevention and management of calcium oxalate stones by regulating the homeostasis of gut microbiota.
Collapse
Affiliation(s)
- Chi Yuan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Yushi He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
4
|
Taguchi K, Chen L, Usawachintachit M, Hamamoto S, Kang M, Sugino T, Unno R, Tzou DT, Sherer BA, Okada A, Yasui T, Ho SP, Stoller ML, Chi T. Fatty acid-binding protein 4 downregulation drives calcification in the development of kidney stone disease. Kidney Int 2020; 97:1042-1056. [PMID: 32247632 DOI: 10.1016/j.kint.2020.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Nephrolithiasis is a significant source of morbidity, and its incidence has increased significantly over the last decades. This rise has been attributed to concurrent increasing rates of obesity, associated with a 3-time risk of developing NL. To date, the mechanism by which obesity is linked to stone formation has not been elucidated. We aimed to utilize a transcriptomics approach to discover the missing link between these two epidemic diseases. We investigated gene expression profiling of nephrolithiasis patients by two RNA-sequencing approaches: comparison between renal papilla tissue with and without the presence of calcified Randall's plaques (RP), and comparison between the papilla, medulla, and cortex regions from within a single recurrent stone forming kidney. Results were overlaid between differently expressed genes found in the patient cohort and in the severely lithogenic kidney to identify common genes. Overlay of these two RNA-sequencing datasets demonstrated there is impairment of lipid metabolism in renal papilla tissue containing RP linked to downregulation of fatty acid binding protein (FABP) 4. Immunohistochemistry of human kidney specimens and microarray analysis of renal tissue from a nephrolithiasis mouse model confirmed that FABP4 downregulation is associated with renal stone formation. In a FABP4 knockout mouse model, FABP4 deficiency resulted in development of both renal and urinary crystals. Our study revealed that FABP4 plays an important, previously unrecognized role in kidney stone formation, providing a feasible mechanism to explain the link between nephrolithiasis and metabolic syndrome.
Collapse
Affiliation(s)
- Kazumi Taguchi
- Department of Urology, University of California, San Francisco, California, USA; Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ling Chen
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, California, USA
| | - Manint Usawachintachit
- Department of Urology, University of California, San Francisco, California, USA; Division of Urology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Misun Kang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, California, USA
| | - Teruaki Sugino
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - David T Tzou
- Department of Urology, University of California, San Francisco, California, USA
| | - Benjamin A Sherer
- Department of Urology, University of California, San Francisco, California, USA
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, California, USA
| | - Marshall L Stoller
- Department of Urology, University of California, San Francisco, California, USA
| | - Thomas Chi
- Department of Urology, University of California, San Francisco, California, USA.
| |
Collapse
|
5
|
Kimber-Trojnar Ż, Patro-Małysza J, Trojnar M, Skórzyńska-Dziduszko KE, Bartosiewicz J, Oleszczuk J, Leszczyńska-Gorzelak B. Fatty Acid-Binding Protein 4-An "Inauspicious" Adipokine-In Serum and Urine of Post-Partum Women with Excessive Gestational Weight Gain and Gestational Diabetes Mellitus. J Clin Med 2018; 7:jcm7120505. [PMID: 30513800 PMCID: PMC6306707 DOI: 10.3390/jcm7120505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
The exact roles of adipokines in the pathogenesis of type 2 diabetes and obesity are still unclear. The aim of the study was to evaluate fatty acid binding protein 4 (FABP4) concentrations in the serum and urine of women with excessive gestational weight gain (EGWG) and gestational diabetes mellitus (GDM) in the early post-partum period, with reference to their laboratory test results, body composition, and hydration status. The study subjects were divided into three groups: 24 healthy controls, 24 mothers with EGWG, and 22 GDM patients. Maternal body composition and hydration status were evaluated by the bioelectrical impedance analysis (BIA) method. Concentrations of FABP4, leptin, and ghrelin were determined via enzyme-linked immunosorbent assay (ELISA). Healthy women were characterized by the lowest serum leptin concentrations and by a negative correlation between the serum and urine FABP4 levels. Serum FABP4 levels were the highest in the GDM group. Serum FABP4 and leptin concentrations correlated positively in the GDM group. The EGWG group had the highest degree of BIA disturbances in the early puerperium and positive correlations between the urine FABP4 and serum leptin and ghrelin concentrations. The physiological and pathological significance of these findings requires further elucidation.
Collapse
Affiliation(s)
- Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jolanta Patro-Małysza
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Marcin Trojnar
- Chair and Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| | | | - Jacek Bartosiewicz
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Jan Oleszczuk
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | | |
Collapse
|
6
|
Deep Transcriptomic Analysis of Black Rockfish (Sebastes schlegelii) Provides New Insights on Responses to Acute Temperature Stress. Sci Rep 2018; 8:9113. [PMID: 29904092 PMCID: PMC6002380 DOI: 10.1038/s41598-018-27013-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
In the present study, we conducted an RNA-Seq analysis to characterize the genes and pathways involved in acute thermal and cold stress responses in the liver of black rockfish, a viviparous teleost that has the ability to cope with a wide range of temperature changes. A total of 584 annotated differentially expressed genes (DEGs) were identified in all three comparisons (HT vs NT, HT vs LT and LT vs NT). Based on an enrichment analysis, DEGs with a potential role in stress accommodation were classified into several categories, including protein folding, metabolism, immune response, signal transduction, molecule transport, membrane, and cell proliferation/apoptosis. Considering that thermal stress has a greater effect than cold stress in black rockfish, 24 shared DEGs in the intersection of the HT vs LT and HT vs NT groups were enriched in 2 oxidation-related gene ontology (GO) terms. Nine important heat-stress-reducing pathways were significantly identified and classified into 3 classes: immune and infectious diseases, organismal immune system and endocrine system. Eight DEGs (early growth response protein 1, bile salt export pump, abcb11, hsp70a, rtp3, 1,25-dihydroxyvitamin d(3) 24-hydroxylase, apoa4, transcription factor jun-b-like and an uncharacterized gene) were observed among all three comparisons, strongly implying their potentially important roles in temperature stress responses.
Collapse
|